Conditional Approximate Normalizing Flows for Joint Multi-Step
Probabilistic Electricity Demand Forecasting
- URL: http://arxiv.org/abs/2201.02753v1
- Date: Sat, 8 Jan 2022 03:42:12 GMT
- Title: Conditional Approximate Normalizing Flows for Joint Multi-Step
Probabilistic Electricity Demand Forecasting
- Authors: Arec Jamgochian, Di Wu, Kunal Menda, Soyeon Jung, Mykel J.
Kochenderfer
- Abstract summary: We introduce the conditional approximate normalizing flow (CANF) to make probabilistic multi-step time-series forecasts when correlations are present over long time horizons.
Empirical results show that conditional approximate normalizing flows outperform other methods in terms of multi-step forecast accuracy and lead to up to 10x better scheduling decisions.
- Score: 32.907448044102864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Some real-world decision-making problems require making probabilistic
forecasts over multiple steps at once. However, methods for probabilistic
forecasting may fail to capture correlations in the underlying time-series that
exist over long time horizons as errors accumulate. One such application is
with resource scheduling under uncertainty in a grid environment, which
requires forecasting electricity demand that is inherently noisy, but often
cyclic. In this paper, we introduce the conditional approximate normalizing
flow (CANF) to make probabilistic multi-step time-series forecasts when
correlations are present over long time horizons. We first demonstrate our
method's efficacy on estimating the density of a toy distribution, finding that
CANF improves the KL divergence by one-third compared to that of a Gaussian
mixture model while still being amenable to explicit conditioning. We then use
a publicly available household electricity consumption dataset to showcase the
effectiveness of CANF on joint probabilistic multi-step forecasting. Empirical
results show that conditional approximate normalizing flows outperform other
methods in terms of multi-step forecast accuracy and lead to up to 10x better
scheduling decisions. Our implementation is available at
https://github.com/sisl/JointDemandForecasting.
Related papers
- Conformalised Conditional Normalising Flows for Joint Prediction Regions in time series [7.200880964149064]
Conformal Prediction offers a powerful framework for quantifying uncertainty in machine learning models.
Applying conformal prediction to probabilistic generative models, such as Normalising Flows is not straightforward.
This work proposes a novel method to conformalise conditional normalising flows, specifically addressing the problem of obtaining prediction regions.
arXiv Detail & Related papers (2024-11-26T02:19:13Z) - Channel-aware Contrastive Conditional Diffusion for Multivariate Probabilistic Time Series Forecasting [19.383395337330082]
We propose a generic channel-aware Contrastive Conditional Diffusion model entitled CCDM.
The proposed CCDM can exhibit superior forecasting capability compared to current state-of-the-art diffusion forecasters.
arXiv Detail & Related papers (2024-10-03T03:13:15Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2023-10-17T20:30:16Z) - Generative Time Series Forecasting with Diffusion, Denoise, and
Disentanglement [51.55157852647306]
Time series forecasting has been a widely explored task of great importance in many applications.
It is common that real-world time series data are recorded in a short time period, which results in a big gap between the deep model and the limited and noisy time series.
We propose to address the time series forecasting problem with generative modeling and propose a bidirectional variational auto-encoder equipped with diffusion, denoise, and disentanglement.
arXiv Detail & Related papers (2023-01-08T12:20:46Z) - When Rigidity Hurts: Soft Consistency Regularization for Probabilistic
Hierarchical Time Series Forecasting [69.30930115236228]
Probabilistic hierarchical time-series forecasting is an important variant of time-series forecasting.
Most methods focus on point predictions and do not provide well-calibrated probabilistic forecasts distributions.
We propose PROFHiT, a fully probabilistic hierarchical forecasting model that jointly models forecast distribution of entire hierarchy.
arXiv Detail & Related papers (2022-06-16T06:13:53Z) - Quantifying Uncertainty in Deep Spatiotemporal Forecasting [67.77102283276409]
We describe two types of forecasting problems: regular grid-based and graph-based.
We analyze UQ methods from both the Bayesian and the frequentist point view, casting in a unified framework via statistical decision theory.
Through extensive experiments on real-world road network traffic, epidemics, and air quality forecasting tasks, we reveal the statistical computational trade-offs for different UQ methods.
arXiv Detail & Related papers (2021-05-25T14:35:46Z) - Learning Interpretable Deep State Space Model for Probabilistic Time
Series Forecasting [98.57851612518758]
Probabilistic time series forecasting involves estimating the distribution of future based on its history.
We propose a deep state space model for probabilistic time series forecasting whereby the non-linear emission model and transition model are parameterized by networks.
We show in experiments that our model produces accurate and sharp probabilistic forecasts.
arXiv Detail & Related papers (2021-01-31T06:49:33Z) - Probabilistic electric load forecasting through Bayesian Mixture Density
Networks [70.50488907591463]
Probabilistic load forecasting (PLF) is a key component in the extended tool-chain required for efficient management of smart energy grids.
We propose a novel PLF approach, framed on Bayesian Mixture Density Networks.
To achieve reliable and computationally scalable estimators of the posterior distributions, both Mean Field variational inference and deep ensembles are integrated.
arXiv Detail & Related papers (2020-12-23T16:21:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.