An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic
- URL: http://arxiv.org/abs/2201.02968v1
- Date: Sun, 9 Jan 2022 09:31:50 GMT
- Title: An Adaptive Device-Edge Co-Inference Framework Based on Soft
Actor-Critic
- Authors: Tao Niu, Yinglei Teng, Zhu Han, Panpan Zou
- Abstract summary: High-dimension parameter model and large-scale mathematical calculation restrict execution efficiency, especially for Internet of Things (IoT) devices.
We propose a new Deep Reinforcement Learning (DRL)-Soft Actor Critic for discrete (SAC-d), which generates the emphexit point, emphexit point, and emphcompressing bits by soft policy iterations.
Based on the latency and accuracy aware reward design, such an computation can well adapt to the complex environment like dynamic wireless channel and arbitrary processing, and is capable of supporting the 5G URL
- Score: 72.35307086274912
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, the applications of deep neural network (DNN) have been very
prominent in many fields such as computer vision (CV) and natural language
processing (NLP) due to its superior feature extraction performance. However,
the high-dimension parameter model and large-scale mathematical calculation
restrict the execution efficiency, especially for Internet of Things (IoT)
devices. Different from the previous cloud/edge-only pattern that brings huge
pressure for uplink communication and device-only fashion that undertakes
unaffordable calculation strength, we highlight the collaborative computation
between the device and edge for DNN models, which can achieve a good balance
between the communication load and execution accuracy. Specifically, a
systematic on-demand co-inference framework is proposed to exploit the
multi-branch structure, in which the pre-trained Alexnet is right-sized through
\emph{early-exit} and partitioned at an intermediate DNN layer. The integer
quantization is enforced to further compress transmission bits. As a result, we
establish a new Deep Reinforcement Learning (DRL) optimizer-Soft Actor Critic
for discrete (SAC-d), which generates the \emph{exit point}, \emph{partition
point}, and \emph{compressing bits} by soft policy iterations. Based on the
latency and accuracy aware reward design, such an optimizer can well adapt to
the complex environment like dynamic wireless channel and arbitrary CPU
processing, and is capable of supporting the 5G URLLC. Real-world experiment on
Raspberry Pi 4 and PC shows the outperformance of the proposed solution.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - PIPE : Parallelized Inference Through Post-Training Quantization
Ensembling of Residual Expansions [23.1120983784623]
PIPE is a quantization method that leverages residual error expansion, along with group sparsity and an ensemble approximation for better parallelization.
It achieves superior performance on every benchmarked application (from vision to NLP tasks), architecture (ConvNets, transformers) and bit-width.
arXiv Detail & Related papers (2023-11-27T13:29:34Z) - Slimmable Encoders for Flexible Split DNNs in Bandwidth and Resource
Constrained IoT Systems [12.427821850039448]
We propose a novel split computing approach based on slimmable ensemble encoders.
The key advantage of our design is the ability to adapt computational load and transmitted data size in real-time with minimal overhead and time.
Our model outperforms existing solutions in terms of compression efficacy and execution time, especially in the context of weak mobile devices.
arXiv Detail & Related papers (2023-06-22T06:33:12Z) - Attention-based Feature Compression for CNN Inference Offloading in Edge
Computing [93.67044879636093]
This paper studies the computational offloading of CNN inference in device-edge co-inference systems.
We propose a novel autoencoder-based CNN architecture (AECNN) for effective feature extraction at end-device.
Experiments show that AECNN can compress the intermediate data by more than 256x with only about 4% accuracy loss.
arXiv Detail & Related papers (2022-11-24T18:10:01Z) - Complexity-Driven CNN Compression for Resource-constrained Edge AI [1.6114012813668934]
We propose a novel and computationally efficient pruning pipeline by exploiting the inherent layer-level complexities of CNNs.
We define three modes of pruning, namely parameter-aware (PA), FLOPs-aware (FA), and memory-aware (MA), to introduce versatile compression of CNNs.
arXiv Detail & Related papers (2022-08-26T16:01:23Z) - A Low-Complexity Approach to Rate-Distortion Optimized Variable Bit-Rate
Compression for Split DNN Computing [5.3221129103999125]
Split computing has emerged as a recent paradigm for implementation of DNN-based AI workloads.
We present an approach that addresses the challenge of optimizing the rate-accuracy-complexity trade-off.
Our approach is remarkably lightweight, both during training and inference, highly effective and achieves excellent rate-distortion performance.
arXiv Detail & Related papers (2022-08-24T15:02:11Z) - Dynamic Split Computing for Efficient Deep Edge Intelligence [78.4233915447056]
We introduce dynamic split computing, where the optimal split location is dynamically selected based on the state of the communication channel.
We show that dynamic split computing achieves faster inference in edge computing environments where the data rate and server load vary over time.
arXiv Detail & Related papers (2022-05-23T12:35:18Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - PatDNN: Achieving Real-Time DNN Execution on Mobile Devices with
Pattern-based Weight Pruning [57.20262984116752]
We introduce a new dimension, fine-grained pruning patterns inside the coarse-grained structures, revealing a previously unknown point in design space.
With the higher accuracy enabled by fine-grained pruning patterns, the unique insight is to use the compiler to re-gain and guarantee high hardware efficiency.
arXiv Detail & Related papers (2020-01-01T04:52:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.