Forecast-based Multi-aspect Framework for Multivariate Time-series
Anomaly Detection
- URL: http://arxiv.org/abs/2201.04792v1
- Date: Thu, 13 Jan 2022 05:12:09 GMT
- Title: Forecast-based Multi-aspect Framework for Multivariate Time-series
Anomaly Detection
- Authors: Lan Wang, Yusan Lin, Yuhang Wu, Huiyuan Chen, Fei Wang, Hao Yang
- Abstract summary: We present FMUAD - a Forecast-based, Multi-aspect, Unsupervised Anomaly Detection framework.
It captures the signature traits of anomaly types - spatial change, temporal change and correlation change - with independent modules.
Experiments show it consistently outperforms other state-of-the-art forecast-based anomaly detectors.
- Score: 35.5539484341082
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Today's cyber-world is vastly multivariate. Metrics collected at extreme
varieties demand multivariate algorithms to properly detect anomalies. However,
forecast-based algorithms, as widely proven approaches, often perform
sub-optimally or inconsistently across datasets. A key common issue is they
strive to be one-size-fits-all but anomalies are distinctive in nature. We
propose a method that tailors to such distinction. Presenting FMUAD - a
Forecast-based, Multi-aspect, Unsupervised Anomaly Detection framework. FMUAD
explicitly and separately captures the signature traits of anomaly types -
spatial change, temporal change and correlation change - with independent
modules. The modules then jointly learn an optimal feature representation,
which is highly flexible and intuitive, unlike most other models in the
category. Extensive experiments show our FMUAD framework consistently
outperforms other state-of-the-art forecast-based anomaly detectors.
Related papers
- Learning Multi-view Multi-class Anomaly Detection [10.199404082194947]
We introduce a Multi-View Multi-Class Anomaly Detection model (MVMCAD), which integrates information from multiple views to accurately identify anomalies.
Specifically, we propose a semi-frozen encoder, where a pre-encoder prior enhancement mechanism is added before the frozen encoder.
An Anomaly Amplification Module (AAM) that models global token interactions and suppresses normal regions, and a Cross-Feature Loss that aligns shallow encoder features with deep decoder features.
arXiv Detail & Related papers (2025-04-30T03:59:58Z) - Partial-Multivariate Model for Forecasting [28.120094495344453]
We propose a Transformer-based partial-multivariate model, PMformer, for forecasting problems.
We demonstrate that PMformer outperforms various univariate and complete-multivariate models.
We also highlight other advantages of PMformer: efficiency and robustness under missing features.
arXiv Detail & Related papers (2024-08-19T05:18:50Z) - USD: Unsupervised Soft Contrastive Learning for Fault Detection in Multivariate Time Series [6.055410677780381]
We introduce a combination of data augmentation and soft contrastive learning, specifically designed to capture the multifaceted nature of state behaviors more accurately.
This dual strategy significantly boosts the model's ability to distinguish between normal and abnormal states, leading to a marked improvement in fault detection performance across multiple datasets and settings.
arXiv Detail & Related papers (2024-05-25T14:48:04Z) - Graph Spatiotemporal Process for Multivariate Time Series Anomaly
Detection with Missing Values [67.76168547245237]
We introduce a novel framework called GST-Pro, which utilizes a graphtemporal process and anomaly scorer to detect anomalies.
Our experimental results show that the GST-Pro method can effectively detect anomalies in time series data and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2024-01-11T10:10:16Z) - Entropy Causal Graphs for Multivariate Time Series Anomaly Detection [7.402342914903391]
This work proposes a novel framework called CGAD, an entropy Causal Graph for multivariate time series Anomaly Detection.
CGAD utilizes transfer entropy to construct graph structures that unveil the underlying causal relationships among time series data.
CGAD outperforms state-of-the-art methods on real-world datasets with a 15% average improvement.
arXiv Detail & Related papers (2023-12-15T01:35:00Z) - Compatible Transformer for Irregularly Sampled Multivariate Time Series [75.79309862085303]
We propose a transformer-based encoder to achieve comprehensive temporal-interaction feature learning for each individual sample.
We conduct extensive experiments on 3 real-world datasets and validate that the proposed CoFormer significantly and consistently outperforms existing methods.
arXiv Detail & Related papers (2023-10-17T06:29:09Z) - Diversity-Measurable Anomaly Detection [106.07413438216416]
We propose Diversity-Measurable Anomaly Detection (DMAD) framework to enhance reconstruction diversity.
PDM essentially decouples deformation from embedding and makes the final anomaly score more reliable.
arXiv Detail & Related papers (2023-03-09T05:52:42Z) - Detecting Multivariate Time Series Anomalies with Zero Known Label [17.930211011723447]
MTGFlow is an unsupervised anomaly detection approach for multivariate time series anomaly detection.
The complex interdependencies among entities and the diverse inherent characteristics of each entity pose significant challenges on the density estimation.
Experiments on five public datasets with seven baselines are conducted, MTGFlow outperforms the SOTA methods by up to 5.0 AUROC%.
arXiv Detail & Related papers (2022-08-03T14:38:19Z) - Causality-Based Multivariate Time Series Anomaly Detection [63.799474860969156]
We formulate the anomaly detection problem from a causal perspective and view anomalies as instances that do not follow the regular causal mechanism to generate the multivariate data.
We then propose a causality-based anomaly detection approach, which first learns the causal structure from data and then infers whether an instance is an anomaly relative to the local causal mechanism.
We evaluate our approach with both simulated and public datasets as well as a case study on real-world AIOps applications.
arXiv Detail & Related papers (2022-06-30T06:00:13Z) - Deep Federated Anomaly Detection for Multivariate Time Series Data [93.08977495974978]
We present a Federated Exemplar-based Deep Neural Network (Fed-ExDNN) to conduct anomaly detection for multivariate time series data on different edge devices.
We show that ExDNN and Fed-ExDNN can outperform state-of-the-art anomaly detection algorithms and federated learning techniques.
arXiv Detail & Related papers (2022-05-09T05:06:58Z) - Machine Learning for Multi-Output Regression: When should a holistic
multivariate approach be preferred over separate univariate ones? [62.997667081978825]
Tree-based ensembles such as the Random Forest are modern classics among statistical learning methods.
We compare these methods in extensive simulations to help in answering the primary question when to use multivariate ensemble techniques.
arXiv Detail & Related papers (2022-01-14T08:44:25Z) - An Evaluation of Anomaly Detection and Diagnosis in Multivariate Time
Series [7.675917669905486]
This paper presents a systematic and comprehensive evaluation of unsupervised and semi-supervised deep-learning based methods for anomaly detection and diagnosis.
We vary the model and post-processing of model errors, through a grid of 10 models and 4 scoring functions, comparing these variants to state of the art methods.
We find that the existing evaluation metrics either do not take events into account, or cannot distinguish between a good detector and trivial detectors.
arXiv Detail & Related papers (2021-09-23T15:14:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.