Experimental demonstration of the dynamics of quantum coherence evolving
under a PT-symmetric Hamiltonian on an NMR quantum processor
- URL: http://arxiv.org/abs/2201.05083v1
- Date: Thu, 13 Jan 2022 17:08:10 GMT
- Title: Experimental demonstration of the dynamics of quantum coherence evolving
under a PT-symmetric Hamiltonian on an NMR quantum processor
- Authors: Akanksha Gautam and Kavita Dorai and Arvind
- Abstract summary: Quantum coherence in the bipartite state oscillates in the unbroken phase regime of the PT-symmetric Hamiltonian.
A similar pattern is observed for the dynamics of total and local coherences in the maximally entangled tripartite state.
- Score: 4.291616110077346
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this work, we study the dynamics of quantum coherence (total coherence,
global coherence and local coherence) evolving under a local PT-symmetric
Hamiltonian in maximally entangled bipartite and tripartite states. Our results
indicate that quantum coherence in the bipartite state oscillates in the
unbroken phase regime of the PT-symmetric Hamiltonian. Interestingly, in the
broken phase regime, while the global coherence decays exponentially, the local
and total coherences enter a 'freezing' regime where they attain a stable value
over time. A similar pattern is observed for the dynamics of total and local
coherences in the maximally entangled tripartite state, while the dynamics of
global coherence in this state differs from that of the bipartite state. These
results were experimentally validated for a maximally entangled bipartite state
on a three-qubit nuclear magnetic resonance (NMR) quantum processor, with one
of the qubits acting as an ancilla. The experimental results match well with
the theoretical predictions, upto experimental errors.
Related papers
- Quantum tunneling and level crossings in the squeeze-driven Kerr
oscillator [0.0]
We analyze the spectrum and the dynamics of the effective model up to high energies.
We argue that the level crossings and their consequences to the dynamics are typical to any quantum system with one degree of freedom.
arXiv Detail & Related papers (2023-05-17T18:00:05Z) - Quasi-equilibrium and quantum correlation in an open spin-pair system [0.0]
Quasi-equilibrium states that can be prepared in solids through Nuclear Magnetic Resonance (NMR) techniques are out-of-equilibrium states that slowly relax towards thermodynamic equilibrium with the lattice.
In this work, we use the quantum discord dynamics as a witness of the quantum correlation in this kind of state.
arXiv Detail & Related papers (2023-03-29T04:33:06Z) - Trapped-Ion Quantum Simulation of Collective Neutrino Oscillations [55.41644538483948]
We study strategies to simulate the coherent collective oscillations of a system of N neutrinos in the two-flavor approximation using quantum computation.
We find that the gate complexity using second order Trotter- Suzuki formulae scales better with system size than with other decomposition methods such as Quantum Signal Processing.
arXiv Detail & Related papers (2022-07-07T09:39:40Z) - A dynamical theory for one-dimensional fermions with strong two-body
losses: universal non-Hermitian Zeno physics and spin-charge separation [0.0]
We study an interacting one-dimensional gas of spin-1/2 fermions with two-body losses.
We show how the two non-equilibrium evolutions build up drastically different charge correlations.
arXiv Detail & Related papers (2022-06-14T13:31:33Z) - Non-Gaussian superradiant transition via three-body ultrastrong coupling [62.997667081978825]
We introduce a class of quantum optical Hamiltonian characterized by three-body couplings.
We propose a circuit-QED scheme based on state-of-the-art technology that implements the considered model.
arXiv Detail & Related papers (2022-04-07T15:39:21Z) - Mixed states driven by Non-Hermitian Hamiltonians of a nuclear spin
ensemble [0.0]
We study the quantum dynamics of a non-interacting spin ensemble under the effect of a reservoir.
We apply the framework of the non-Hermitian Hamiltonian operators.
arXiv Detail & Related papers (2021-12-15T14:41:28Z) - Effect of Emitters on Quantum State Transfer in Coupled Cavity Arrays [48.06402199083057]
We study the effects of atoms in cavities which can absorb and emit photons as they propagate down the array.
Our model is equivalent to previously examined spin chains in the one-excitation sector and in the absence of emitters.
arXiv Detail & Related papers (2021-12-10T18:52:07Z) - Quantum coherence, correlations and nonclassical states in the two-qubit
Rabi model with parametric oscillator [0.0]
Quantum coherence and quantum correlations are studied in a strongly interacting system composed of two qubits and a parametric medium.
We employ the adiabatic approximation approach to analytically solve the system.
The reconstructed states are observed to be nearly pure generalized Bell states.
arXiv Detail & Related papers (2021-06-12T11:16:40Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Unraveling the topology of dissipative quantum systems [58.720142291102135]
We discuss topology in dissipative quantum systems from the perspective of quantum trajectories.
We show for a broad family of translation-invariant collapse models that the set of dark state-inducing Hamiltonians imposes a nontrivial topological structure on the space of Hamiltonians.
arXiv Detail & Related papers (2020-07-12T11:26:02Z) - Exploring 2D synthetic quantum Hall physics with a quasi-periodically
driven qubit [58.720142291102135]
Quasi-periodically driven quantum systems are predicted to exhibit quantized topological properties.
We experimentally study a synthetic quantum Hall effect with a two-tone drive.
arXiv Detail & Related papers (2020-04-07T15:00:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.