Free-Fermion Subsystem Codes
- URL: http://arxiv.org/abs/2201.07254v1
- Date: Tue, 18 Jan 2022 19:00:04 GMT
- Title: Free-Fermion Subsystem Codes
- Authors: Adrian Chapman, Steven T. Flammia, Alicia J. Koll\'ar
- Abstract summary: We consider quantum error-correcting subsystem codes whose gauge generators realize a free-fermion-solvable spin model.
In this setting, errors are suppressed by a Hamiltonian whose terms are the gauge generators of the code.
We present the first known example of an exactly solvable spin model with a two-dimensional free-fermion description and exact topological qubits.
- Score: 0.3222802562733786
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We consider quantum error-correcting subsystem codes whose gauge generators
realize a translation-invariant, free-fermion-solvable spin model. In this
setting, errors are suppressed by a Hamiltonian whose terms are the gauge
generators of the code and whose exact spectrum and eigenstates can be found
via a generalized Jordan-Wigner transformation. Such solutions are
characterized by the frustration graph of the Hamiltonian: the graph whose
vertices are Hamiltonian terms, which are neighboring if the terms anticommute.
We provide methods for embedding a given frustration graph in the
anticommutation relations of a spin model and present the first known example
of an exactly solvable spin model with a two-dimensional free-fermion
description and exact topological qubits. This model can be viewed as a
free-fermionized version of the two-dimensional Bacon-Shor code. Using
graph-theoretic tools to study the unit cell, we give an efficient algorithm
for deciding if a given translation-invariant spin model is solvable, and
explicitly construct the solution. Further, we examine the energetics of these
exactly solvable models from the graph-theoretic perspective and show that the
relevant gaps of the spin model correspond to known graph-theoretic quantities:
the skew energy and the median eigenvalue of an oriented graph. Finally, we
numerically search for models which have large spectral gaps above the ground
state spin configuration and thus exhibit particularly robust thermal
suppression of errors. These results suggest that optimal models will have low
dimensionality and odd coordination numbers, and that the primary limit to
energetic error suppression is the skew energy difference between different
symmetry sectors rather than single-particle excitations of the free fermions.
Related papers
- Graph Generation via Spectral Diffusion [51.60814773299899]
We present GRASP, a novel graph generative model based on 1) the spectral decomposition of the graph Laplacian matrix and 2) a diffusion process.
Specifically, we propose to use a denoising model to sample eigenvectors and eigenvalues from which we can reconstruct the graph Laplacian and adjacency matrix.
Our permutation invariant model can also handle node features by concatenating them to the eigenvectors of each node.
arXiv Detail & Related papers (2024-02-29T09:26:46Z) - Geometric Neural Diffusion Processes [55.891428654434634]
We extend the framework of diffusion models to incorporate a series of geometric priors in infinite-dimension modelling.
We show that with these conditions, the generative functional model admits the same symmetry.
arXiv Detail & Related papers (2023-07-11T16:51:38Z) - A Unified Graph-Theoretic Framework for Free-Fermion Solvability [0.0]
We show that a quantum spin system has an exact description by non-interacting fermions if its frustration graph is claw-free.
We identify a class of cycle symmetries for all models with claw-free frustration graphs.
arXiv Detail & Related papers (2023-05-25T00:21:35Z) - Bootstrapping the gap in quantum spin systems [0.7106986689736826]
We use the equations of motion to develop an analogue of the conformal block expansion for matrix elements.
The method can be applied to any quantum mechanical system with a local Hamiltonian.
arXiv Detail & Related papers (2022-11-07T19:07:29Z) - GeoDiff: a Geometric Diffusion Model for Molecular Conformation
Generation [102.85440102147267]
We propose a novel generative model named GeoDiff for molecular conformation prediction.
We show that GeoDiff is superior or comparable to existing state-of-the-art approaches.
arXiv Detail & Related papers (2022-03-06T09:47:01Z) - Boundary theories of critical matchgate tensor networks [59.433172590351234]
Key aspects of the AdS/CFT correspondence can be captured in terms of tensor network models on hyperbolic lattices.
For tensors fulfilling the matchgate constraint, these have previously been shown to produce disordered boundary states.
We show that these Hamiltonians exhibit multi-scale quasiperiodic symmetries captured by an analytical toy model.
arXiv Detail & Related papers (2021-10-06T18:00:03Z) - Non-commutative graphs based on finite-infinite system couplings:
quantum error correction for a qubit coupled to a coherent field [0.0]
We study error correction in the case of a finite-dimensional quantum system coupled to an infinite dimensional system.
We find the quantum anticlique, which is the projector on the error correcting subspace, and analyze it as a function of the frequencies of the qubit and the bosonic field.
arXiv Detail & Related papers (2021-04-24T12:06:43Z) - Joint Network Topology Inference via Structured Fusion Regularization [70.30364652829164]
Joint network topology inference represents a canonical problem of learning multiple graph Laplacian matrices from heterogeneous graph signals.
We propose a general graph estimator based on a novel structured fusion regularization.
We show that the proposed graph estimator enjoys both high computational efficiency and rigorous theoretical guarantee.
arXiv Detail & Related papers (2021-03-05T04:42:32Z) - Signatures of Chaos in Non-integrable Models of Quantum Field Theory [0.0]
We study signatures of quantum chaos in (1+1)D Quantum Field Theory (QFT) models.
We focus on the double sine-Gordon, also studying the massive sine-Gordon and $phi4$ model.
arXiv Detail & Related papers (2020-12-15T18:56:20Z) - Characterization of solvable spin models via graph invariants [0.38073142980732994]
We provide a complete characterization of models that can be mapped to free fermions hopping on a graph.
A corollary of our result is a complete set of constant-sized commutation structures that constitute the obstructions to a free-fermion solution.
We show how several exact free-fermion solutions from the literature fit into our formalism and give an explicit example of a new model previously unknown to be solvable by free fermions.
arXiv Detail & Related papers (2020-03-11T18:06:14Z) - Semiparametric Nonlinear Bipartite Graph Representation Learning with
Provable Guarantees [106.91654068632882]
We consider the bipartite graph and formalize its representation learning problem as a statistical estimation problem of parameters in a semiparametric exponential family distribution.
We show that the proposed objective is strongly convex in a neighborhood around the ground truth, so that a gradient descent-based method achieves linear convergence rate.
Our estimator is robust to any model misspecification within the exponential family, which is validated in extensive experiments.
arXiv Detail & Related papers (2020-03-02T16:40:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.