The Enforcers: Consistent Sparse-Discrete Methods for Constraining
Informative Emergent Communication
- URL: http://arxiv.org/abs/2201.07452v1
- Date: Wed, 19 Jan 2022 07:31:06 GMT
- Title: The Enforcers: Consistent Sparse-Discrete Methods for Constraining
Informative Emergent Communication
- Authors: Seth Karten, Siddharth Agrawal, Mycal Tucker, Dana Hughes, Michael
Lewis, Julie Shah, Katia Sycara
- Abstract summary: Communication enables agents to cooperate to achieve their goals.
Recent work in learning sparse communication suffers from high variance training where, the price of decreasing communication is a decrease in reward, particularly in cooperative tasks.
This research addresses the above issues by limiting the loss in reward of decreasing communication and eliminating the penalty for discretization.
- Score: 5.432350993419402
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Communication enables agents to cooperate to achieve their goals. Learning
when to communicate, i.e. sparse communication, is particularly important where
bandwidth is limited, in situations where agents interact with humans, in
partially observable scenarios where agents must convey information unavailable
to others, and in non-cooperative scenarios where agents may hide information
to gain a competitive advantage. Recent work in learning sparse communication,
however, suffers from high variance training where, the price of decreasing
communication is a decrease in reward, particularly in cooperative tasks.
Sparse communications are necessary to match agent communication to limited
human bandwidth. Humans additionally communicate via discrete linguistic
tokens, previously shown to decrease task performance when compared to
continuous communication vectors. This research addresses the above issues by
limiting the loss in reward of decreasing communication and eliminating the
penalty for discretization. In this work, we successfully constrain training
using a learned gate to regulate when to communicate while using discrete
prototypes that reflect what to communicate for cooperative tasks with partial
observability. We provide two types of "Enforcers" for hard and soft budget
constraints and present results of communication under different budgets. We
show that our method satisfies constraints while yielding the same performance
as comparable, unconstrained methods.
Related papers
- On the Role of Emergent Communication for Social Learning in Multi-Agent
Reinforcement Learning [0.0]
Social learning uses cues from experts to align heterogeneous policies, reduce sample complexity, and solve partially observable tasks.
This paper proposes an unsupervised method based on the information bottleneck to capture both referential complexity and task-specific utility.
arXiv Detail & Related papers (2023-02-28T03:23:27Z) - AC2C: Adaptively Controlled Two-Hop Communication for Multi-Agent
Reinforcement Learning [4.884877440051105]
We propose a novel communication protocol called Adaptively Controlled Two-Hop Communication (AC2C)
AC2C employs an adaptive two-hop communication strategy to enable long-range information exchange among agents to boost performance.
We evaluate AC2C on three cooperative multi-agent tasks, and the experimental results show that it outperforms relevant baselines with lower communication costs.
arXiv Detail & Related papers (2023-02-24T09:00:34Z) - Towards True Lossless Sparse Communication in Multi-Agent Systems [1.911678487931003]
Communication enables agents to cooperate to achieve their goals.
Recent work in learning sparse individualized communication suffers from high variance during training.
We use the information bottleneck to reframe sparsity as a representation learning problem.
arXiv Detail & Related papers (2022-11-30T20:43:34Z) - Emergent Quantized Communication [34.31732248872158]
We propose an alternative approach to achieve discrete communication -- quantization of communicated messages.
Message quantization allows us to train the model end-to-end, achieving superior performance in multiple setups.
arXiv Detail & Related papers (2022-11-04T12:39:45Z) - Over-communicate no more: Situated RL agents learn concise communication
protocols [78.28898217947467]
It is unclear how to design artificial agents that can learn to effectively and efficiently communicate with each other.
Much research on communication emergence uses reinforcement learning (RL)
We explore situated communication in a multi-step task, where the acting agent has to forgo an environmental action to communicate.
We find that while all tested pressures can disincentivise over-communication, situated communication does it most effectively and, unlike the cost on effort, does not negatively impact emergence.
arXiv Detail & Related papers (2022-11-02T21:08:14Z) - Distributed Adaptive Learning Under Communication Constraints [54.22472738551687]
This work examines adaptive distributed learning strategies designed to operate under communication constraints.
We consider a network of agents that must solve an online optimization problem from continual observation of streaming data.
arXiv Detail & Related papers (2021-12-03T19:23:48Z) - Quasi-Equivalence Discovery for Zero-Shot Emergent Communication [63.175848843466845]
We present a novel problem setting and the Quasi-Equivalence Discovery algorithm that allows for zero-shot coordination (ZSC)
We show that these two factors lead to unique optimal ZSC policies in referential games.
QED can iteratively discover the symmetries in this setting and converges to the optimal ZSC policy.
arXiv Detail & Related papers (2021-03-14T23:42:37Z) - Adversarial Attacks On Multi-Agent Communication [80.4392160849506]
Modern autonomous systems will soon be deployed at scale, opening up the possibility for cooperative multi-agent systems.
Such advantages rely heavily on communication channels which have been shown to be vulnerable to security breaches.
In this paper, we explore such adversarial attacks in a novel multi-agent setting where agents communicate by sharing learned intermediate representations.
arXiv Detail & Related papers (2021-01-17T00:35:26Z) - Learning to Communicate and Correct Pose Errors [75.03747122616605]
We study the setting proposed in V2VNet, where nearby self-driving vehicles jointly perform object detection and motion forecasting in a cooperative manner.
We propose a novel neural reasoning framework that learns to communicate, to estimate potential errors, and to reach a consensus about those errors.
arXiv Detail & Related papers (2020-11-10T18:19:40Z) - Exploring Zero-Shot Emergent Communication in Embodied Multi-Agent
Populations [59.608216900601384]
We study agents that learn to communicate via actuating their joints in a 3D environment.
We show that under realistic assumptions, a non-uniform distribution of intents and a common-knowledge energy cost, these agents can find protocols that generalize to novel partners.
arXiv Detail & Related papers (2020-10-29T19:23:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.