A Prescriptive Dirichlet Power Allocation Policy with Deep Reinforcement
Learning
- URL: http://arxiv.org/abs/2201.08445v1
- Date: Thu, 20 Jan 2022 20:41:04 GMT
- Title: A Prescriptive Dirichlet Power Allocation Policy with Deep Reinforcement
Learning
- Authors: Yuan Tian, Minghao Han, Chetan Kulkarni, Olga Fink
- Abstract summary: In this work, we propose the Dirichlet policy for continuous allocation tasks and analyze the bias and variance of its policy gradients.
We demonstrate that the Dirichlet policy is bias-free and provides significantly faster convergence and better performance than the Gaussian-softmax policy.
The experimental results show the potential to prescribe optimal operation, improve the efficiency and sustainability of multi-power source systems.
- Score: 6.003234406806134
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: Prescribing optimal operation based on the condition of the system and,
thereby, potentially prolonging the remaining useful lifetime has a large
potential for actively managing the availability, maintenance and costs of
complex systems. Reinforcement learning (RL) algorithms are particularly
suitable for this type of problems given their learning capabilities. A special
case of a prescriptive operation is the power allocation task, which can be
considered as a sequential allocation problem, where the action space is
bounded by a simplex constraint. A general continuous action-space solution of
such sequential allocation problems has still remained an open research
question for RL algorithms. In continuous action-space, the standard Gaussian
policy applied in reinforcement learning does not support simplex constraints,
while the Gaussian-softmax policy introduces a bias during training. In this
work, we propose the Dirichlet policy for continuous allocation tasks and
analyze the bias and variance of its policy gradients. We demonstrate that the
Dirichlet policy is bias-free and provides significantly faster convergence,
better performance and better hyperparameters robustness over the
Gaussian-softmax policy. Moreover, we demonstrate the applicability of the
proposed algorithm on a prescriptive operation case, where we propose the
Dirichlet power allocation policy and evaluate the performance on a case study
of a set of multiple lithium-ion (Li-I) battery systems. The experimental
results show the potential to prescribe optimal operation, improve the
efficiency and sustainability of multi-power source systems.
Related papers
- Last-Iterate Global Convergence of Policy Gradients for Constrained Reinforcement Learning [62.81324245896717]
We introduce an exploration-agnostic algorithm, called C-PG, which exhibits global last-ite convergence guarantees under (weak) gradient domination assumptions.
We numerically validate our algorithms on constrained control problems, and compare them with state-of-the-art baselines.
arXiv Detail & Related papers (2024-07-15T14:54:57Z) - Learning Optimal Deterministic Policies with Stochastic Policy Gradients [62.81324245896716]
Policy gradient (PG) methods are successful approaches to deal with continuous reinforcement learning (RL) problems.
In common practice, convergence (hyper)policies are learned only to deploy their deterministic version.
We show how to tune the exploration level used for learning to optimize the trade-off between the sample complexity and the performance of the deployed deterministic policy.
arXiv Detail & Related papers (2024-05-03T16:45:15Z) - Risk-sensitive Markov Decision Process and Learning under General
Utility Functions [3.6260136172126667]
Reinforcement Learning (RL) has gained substantial attention across diverse application domains and theoretical investigations.
We propose a modified value algorithm that employs an epsilon-covering over the space of cumulative reward.
In the absence of a simulator, our algorithm, designed with an upper-confidence-bound exploration approach, identifies a near-optimal policy.
arXiv Detail & Related papers (2023-11-22T18:50:06Z) - Quasi-optimal Reinforcement Learning with Continuous Actions [8.17049210746654]
We develop a novel emphquasi-optimal learning algorithm, which can be easily optimized in off-policy settings.
We evaluate our algorithm with comprehensive simulated experiments and a dose suggestion real application to Ohio Type 1 diabetes dataset.
arXiv Detail & Related papers (2023-01-21T11:30:13Z) - Policy learning "without" overlap: Pessimism and generalized empirical Bernstein's inequality [94.89246810243053]
This paper studies offline policy learning, which aims at utilizing observations collected a priori to learn an optimal individualized decision rule.
Existing policy learning methods rely on a uniform overlap assumption, i.e., the propensities of exploring all actions for all individual characteristics must be lower bounded.
We propose Pessimistic Policy Learning (PPL), a new algorithm that optimize lower confidence bounds (LCBs) instead of point estimates.
arXiv Detail & Related papers (2022-12-19T22:43:08Z) - Offline Policy Optimization with Eligible Actions [34.4530766779594]
offline policy optimization could have a large impact on many real-world decision-making problems.
Importance sampling and its variants are a commonly used type of estimator in offline policy evaluation.
We propose an algorithm to avoid this overfitting through a new per-state-neighborhood normalization constraint.
arXiv Detail & Related papers (2022-07-01T19:18:15Z) - Reinforcement Learning for Adaptive Optimal Stationary Control of Linear
Stochastic Systems [15.410124023805249]
This paper studies the adaptive optimal stationary control of continuous-time linear systems with both additive and multiplicative noises.
A novel off-policy reinforcement learning algorithm, named optimistic least-squares-based iteration policy, is proposed.
arXiv Detail & Related papers (2021-07-16T09:27:02Z) - Policy Mirror Descent for Regularized Reinforcement Learning: A
Generalized Framework with Linear Convergence [60.20076757208645]
This paper proposes a general policy mirror descent (GPMD) algorithm for solving regularized RL.
We demonstrate that our algorithm converges linearly over an entire range learning rates, in a dimension-free fashion, to the global solution.
arXiv Detail & Related papers (2021-05-24T02:21:34Z) - State Augmented Constrained Reinforcement Learning: Overcoming the
Limitations of Learning with Rewards [88.30521204048551]
A common formulation of constrained reinforcement learning involves multiple rewards that must individually accumulate to given thresholds.
We show a simple example in which the desired optimal policy cannot be induced by any weighted linear combination of rewards.
This work addresses this shortcoming by augmenting the state with Lagrange multipliers and reinterpreting primal-dual methods.
arXiv Detail & Related papers (2021-02-23T21:07:35Z) - Escaping from Zero Gradient: Revisiting Action-Constrained Reinforcement
Learning via Frank-Wolfe Policy Optimization [5.072893872296332]
Action-constrained reinforcement learning (RL) is a widely-used approach in various real-world applications.
We propose a learning algorithm that decouples the action constraints from the policy parameter update.
We show that the proposed algorithm significantly outperforms the benchmark methods on a variety of control tasks.
arXiv Detail & Related papers (2021-02-22T14:28:03Z) - Risk-Sensitive Deep RL: Variance-Constrained Actor-Critic Provably Finds
Globally Optimal Policy [95.98698822755227]
We make the first attempt to study risk-sensitive deep reinforcement learning under the average reward setting with the variance risk criteria.
We propose an actor-critic algorithm that iteratively and efficiently updates the policy, the Lagrange multiplier, and the Fenchel dual variable.
arXiv Detail & Related papers (2020-12-28T05:02:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.