GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering
- URL: http://arxiv.org/abs/2201.08860v1
- Date: Fri, 21 Jan 2022 19:00:05 GMT
- Title: GreaseLM: Graph REASoning Enhanced Language Models for Question
Answering
- Authors: Xikun Zhang, Antoine Bosselut, Michihiro Yasunaga, Hongyu Ren, Percy
Liang, Christopher D. Manning, Jure Leskovec
- Abstract summary: GreaseLM is a new model that fuses encoded representations from pretrained LMs and graph neural networks over multiple layers of modality interaction operations.
We show that GreaseLM can more reliably answer questions that require reasoning over both situational constraints and structured knowledge, even outperforming models 8x larger.
- Score: 159.9645181522436
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Answering complex questions about textual narratives requires reasoning over
both stated context and the world knowledge that underlies it. However,
pretrained language models (LM), the foundation of most modern QA systems, do
not robustly represent latent relationships between concepts, which is
necessary for reasoning. While knowledge graphs (KG) are often used to augment
LMs with structured representations of world knowledge, it remains an open
question how to effectively fuse and reason over the KG representations and the
language context, which provides situational constraints and nuances. In this
work, we propose GreaseLM, a new model that fuses encoded representations from
pretrained LMs and graph neural networks over multiple layers of modality
interaction operations. Information from both modalities propagates to the
other, allowing language context representations to be grounded by structured
world knowledge, and allowing linguistic nuances (e.g., negation, hedging) in
the context to inform the graph representations of knowledge. Our results on
three benchmarks in the commonsense reasoning (i.e., CommonsenseQA, OpenbookQA)
and medical question answering (i.e., MedQA-USMLE) domains demonstrate that
GreaseLM can more reliably answer questions that require reasoning over both
situational constraints and structured knowledge, even outperforming models 8x
larger.
Related papers
- A Prompt-Based Knowledge Graph Foundation Model for Universal In-Context Reasoning [17.676185326247946]
We propose a prompt-based KG foundation model via in-context learning, namely KG-ICL, to achieve a universal reasoning ability.
To encode prompt graphs with the generalization ability to unseen entities and relations in queries, we first propose a unified tokenizer.
Then, we propose two message passing neural networks to perform prompt encoding and KG reasoning, respectively.
arXiv Detail & Related papers (2024-10-16T06:47:18Z) - Debate on Graph: a Flexible and Reliable Reasoning Framework for Large Language Models [33.662269036173456]
Large Language Models (LLMs) may suffer from hallucinations in real-world applications due to the lack of relevant knowledge.
Knowledge Graph Question Answering (KGQA) serves as a critical touchstone for the integration.
We propose an interactive KGQA framework that leverages the interactive learning capabilities of LLMs to perform reasoning and Debating over Graphs (DoG)
arXiv Detail & Related papers (2024-09-05T01:11:58Z) - Integrating Large Language Models with Graph-based Reasoning for Conversational Question Answering [58.17090503446995]
We focus on a conversational question answering task which combines the challenges of understanding questions in context and reasoning over evidence gathered from heterogeneous sources like text, knowledge graphs, tables, and infoboxes.
Our method utilizes a graph structured representation to aggregate information about a question and its context.
arXiv Detail & Related papers (2024-06-14T13:28:03Z) - G-SAP: Graph-based Structure-Aware Prompt Learning over Heterogeneous Knowledge for Commonsense Reasoning [8.02547453169677]
We propose a novel Graph-based Structure-Aware Prompt Learning Model for commonsense reasoning, named G-SAP.
In particular, an evidence graph is constructed by integrating multiple knowledge sources, i.e. ConceptNet, Wikipedia, and Cambridge Dictionary.
The results reveal a significant advancement over the existing models, especially, with 6.12% improvement over the SoTA LM+GNNs model on the OpenbookQA dataset.
arXiv Detail & Related papers (2024-05-09T08:28:12Z) - ReasoningLM: Enabling Structural Subgraph Reasoning in Pre-trained
Language Models for Question Answering over Knowledge Graph [142.42275983201978]
We propose a subgraph-aware self-attention mechanism to imitate the GNN for performing structured reasoning.
We also adopt an adaptation tuning strategy to adapt the model parameters with 20,000 subgraphs with synthesized questions.
Experiments show that ReasoningLM surpasses state-of-the-art models by a large margin, even with fewer updated parameters and less training data.
arXiv Detail & Related papers (2023-12-30T07:18:54Z) - Empowering Language Models with Knowledge Graph Reasoning for Question
Answering [117.79170629640525]
We propose knOwledge REasOning empowered Language Model (OREO-LM)
OREO-LM consists of a novel Knowledge Interaction Layer that can be flexibly plugged into existing Transformer-based LMs.
We show significant performance gain, achieving state-of-art results in the Closed-Book setting.
arXiv Detail & Related papers (2022-11-15T18:26:26Z) - Structured Knowledge Grounding for Question Answering [0.23068481501673416]
We propose to leverage the language and knowledge for knowledge based question-answering with flexibility, breadth of coverage and structured reasoning.
Specifically, we devise a knowledge construction method that retrieves the relevant context with a dynamic hop.
And we devise a deep fusion mechanism to further bridge the information exchanging bottleneck between the language and the knowledge.
arXiv Detail & Related papers (2022-09-17T08:48:50Z) - elBERto: Self-supervised Commonsense Learning for Question Answering [131.51059870970616]
We propose a Self-supervised Bidirectional Representation Learning of Commonsense framework, which is compatible with off-the-shelf QA model architectures.
The framework comprises five self-supervised tasks to force the model to fully exploit the additional training signals from contexts containing rich commonsense.
elBERto achieves substantial improvements on out-of-paragraph and no-effect questions where simple lexical similarity comparison does not help.
arXiv Detail & Related papers (2022-03-17T16:23:45Z) - QA-GNN: Reasoning with Language Models and Knowledge Graphs for Question
Answering [122.84513233992422]
We propose a new model, QA-GNN, which addresses the problem of answering questions using knowledge from pre-trained language models (LMs) and knowledge graphs (KGs)
We show its improvement over existing LM and LM+KG models, as well as its capability to perform interpretable and structured reasoning.
arXiv Detail & Related papers (2021-04-13T17:32:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.