Frequency-dependent Inter-pseudospin Solutions to Superconducting
Strontium Ruthenate
- URL: http://arxiv.org/abs/2201.08917v2
- Date: Mon, 31 Jan 2022 23:14:49 GMT
- Title: Frequency-dependent Inter-pseudospin Solutions to Superconducting
Strontium Ruthenate
- Authors: Olivier Gingras, Nikita Allaglo, Reza Nourafkan, Michel C\^ot\'e,
Andr\'e-Marie S. Tremblay
- Abstract summary: We find that spin-orbit coupling mixes even and odd contributions in orbital, spin and frequency spaces.
We find that leading inter-pseudospin symmetries, B$_1g+$ and A$_2g-$, have intra-orbital components respectively even and odd in Matsubara frequency.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The lasting puzzle of the superconducting order parameter of Sr$_2$RuO$_4$
calls for theoretical studies that include seldom-considered effects. Here we
include spin-orbit coupling effects on the electronic structure and then solve
the linearized Eliashberg equation in a pseudospin basis, including the
possibility that spin and charge fluctuations induce frequency-dependent
superconducting order parameters. We find that spin-orbit coupling mixes even
and odd contributions in orbital, spin and frequency spaces and that leading
inter-pseudospin symmetries, B$_{1g}^+$ and A$_{2g}^-$, have intra-orbital
components respectively even and odd in Matsubara frequency. An accidental
degeneracy between these could resolve apparent experimental contradictions.
Related papers
- Quantum Phonon Dynamics Induced Spontaneous Spin-Orbit Coupling [9.748987642024122]
A spin-dependent electron-phonon coupling model is investigated on a half-filled square lattice.
Spin-orbit coupling emerges as an order in the ground state for any $lambda$ in the adiabatic limit.
Our work opens up the possibility of hidden spin-orbit coupling in materials where it is otherwise forbidden by lattice symmetry.
arXiv Detail & Related papers (2024-10-22T12:19:52Z) - Waveguide QED at the onset of spin-spin correlations [36.136619420474766]
We find that molecules belonging to the crystal sublattice B form one-dimensional spin chains.
The microwave transmission shows evidences for the collective coupling of quasi-identical spins to the propagating photons.
arXiv Detail & Related papers (2024-04-04T18:00:05Z) - Robust spectral $\pi$ pairing in the random-field Floquet quantum Ising
model [44.84660857803376]
We study level pairings in the many-body spectrum of the random-field Floquet quantum Ising model.
The robustness of $pi$ pairings against longitudinal disorder may be useful for quantum information processing.
arXiv Detail & Related papers (2024-01-09T20:37:48Z) - Superconductivity in Correlated Multi-Orbital Systems with Spin-Orbit
Coupling: Coexistence of Even- and Odd-Frequency Pairing and the Case of
Strontium Ruthenate [0.0]
We generalize the frequency-dependent theory of superconductivity mediated by spin and charge fluctuations to include spin-orbit coupling in multi-orbital systems.
We characterize the superconducting states using the spin-parity-orbital-time $SPOT$ quantum numbers, group theory, and phase distributions in the complex plane.
We find that spin-orbit coupling leads to ubiquitous entanglement of spin and orbital quantum numbers, along with notable mixing between even- and odd-frequency correlations.
arXiv Detail & Related papers (2022-01-21T23:06:18Z) - Engineering infinite-range SU($n$) interactions with spin-orbit-coupled
fermions in an optical lattice [0.0]
We study multilevel fermions in an optical lattice described by the Hubbard model with on site SU($n$)-symmetric interactions.
Raman pulses that address internal spin states modify the atomic dispersion relation and induce spin-orbit coupling.
Our predictions are readily testable in current experiments with ultracold alkaline-earth(-like) atoms.
arXiv Detail & Related papers (2021-09-22T20:13:20Z) - Anisotropic electron-nuclear interactions in a rotating quantum spin
bath [55.41644538483948]
Spin-bath interactions are strongly anisotropic, and rapid physical rotation has long been used in solid-state nuclear magnetic resonance.
We show that the interaction between electron spins of nitrogen-vacancy centers and a bath of $13$C nuclear spins introduces decoherence into the system.
Our findings offer new insights into the use of physical rotation for quantum control with implications for quantum systems having motional and rotational degrees of freedom that are not fixed.
arXiv Detail & Related papers (2021-05-16T06:15:00Z) - $\mathcal{P}$,$\mathcal{T}$-odd effects for RaOH molecule in the excited
vibrational state [77.34726150561087]
Triatomic molecule RaOH combines the advantages of laser-coolability and the spectrum with close opposite-parity doublets.
We obtain the rovibrational wave functions of RaOH in the ground electronic state and excited vibrational state using the close-coupled equations derived from the adiabatic Hamiltonian.
arXiv Detail & Related papers (2020-12-15T17:08:33Z) - Electrically tuned hyperfine spectrum in neutral
Tb(II)(Cp$^{\rm{iPr5}}$)$_2$ single-molecule magnet [64.10537606150362]
Both molecular electronic and nuclear spin levels can be used as qubits.
In solid state systems with dopants, an electric field was shown to effectively change the spacing between the nuclear spin qubit levels.
This hyperfine Stark effect may be useful for applications of molecular nuclear spins for quantum computing.
arXiv Detail & Related papers (2020-07-31T01:48:57Z) - Spin shuttling in a silicon double quantum dot [0.0]
We study a minimal version of spin shuttling between two quantum dots.
Spin-orbit interaction and the Zeeman effect in an inhomogeneous magnetic field play an important role for spin shuttling.
We find that a spin infidelity as low as $1-F_slesssim 0.002$ with a relatively fast level velocity of $alpha = 600, mu$eV/ns is feasible.
arXiv Detail & Related papers (2020-07-07T16:33:06Z) - Hyperfine and quadrupole interactions for Dy isotopes in DyPc$_2$
molecules [77.57930329012771]
Nuclear spin levels play an important role in understanding magnetization dynamics and implementation and control of quantum bits in lanthanide-based single-molecule magnets.
We investigate the hyperfine and nuclear quadrupole interactions for $161$Dy and $163$Dy nucleus in anionic DyPc$.
arXiv Detail & Related papers (2020-02-12T18:25:31Z) - Optimal coupling of HoW$_{10}$ molecular magnets to superconducting
circuits near spin clock transitions [85.83811987257297]
We study the coupling of pure and magnetically diluted crystals of HoW$_10$ magnetic clusters to microwave superconducting coplanar waveguides.
Results show that engineering spin-clock states of molecular systems offers a promising strategy to combine sizeable spin-photon interactions with a sufficient isolation from unwanted magnetic noise sources.
arXiv Detail & Related papers (2019-11-18T11:03:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.