Optimal estimation of Gaussian DAG models
- URL: http://arxiv.org/abs/2201.10548v1
- Date: Tue, 25 Jan 2022 18:56:56 GMT
- Title: Optimal estimation of Gaussian DAG models
- Authors: Ming Gao, Wai Ming Tai, Bryon Aragam
- Abstract summary: We study the optimal sample complexity of learning a Gaussian directed acyclic graph (DAG) from observational data.
Our results also extend to more general identification assumptions as well as subgaussian errors.
- Score: 14.240183323622288
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the optimal sample complexity of learning a Gaussian directed
acyclic graph (DAG) from observational data. Our main result establishes the
minimax optimal sample complexity for learning the structure of a linear
Gaussian DAG model with equal variances to be $n\asymp q\log(d/q)$, where $q$
is the maximum number of parents and $d$ is the number of nodes. We further
make comparisons with the classical problem of learning (undirected) Gaussian
graphical models, showing that under the equal variance assumption, these two
problems share the same optimal sample complexity. In other words, at least for
Gaussian models with equal error variances, learning a directed graphical model
is not more difficult than learning an undirected graphical model. Our results
also extend to more general identification assumptions as well as subgaussian
errors.
Related papers
- Greedy equivalence search for nonparametric graphical models [13.153623397411605]
GES is known to consistently estimate the structure of directed acyclic graph (DAG) models.
A general theory that covers general nonparametric DAG models, however, is missing.
Here, we establish the consistency of greedy equivalence search for general families of DAG models that satisfy smoothness conditions on the Markov factorization.
arXiv Detail & Related papers (2024-06-25T02:31:32Z) - Scaling Laws in Linear Regression: Compute, Parameters, and Data [86.48154162485712]
We study the theory of scaling laws in an infinite dimensional linear regression setup.
We show that the reducible part of the test error is $Theta(-(a-1) + N-(a-1)/a)$.
Our theory is consistent with the empirical neural scaling laws and verified by numerical simulation.
arXiv Detail & Related papers (2024-06-12T17:53:29Z) - Learning Mixtures of Gaussians Using Diffusion Models [9.118706387430883]
We give a new algorithm for learning mixtures of $k$ Gaussians to TV error.
Our approach is analytic and relies on the framework of diffusion models.
arXiv Detail & Related papers (2024-04-29T17:00:20Z) - Probabilistic Unrolling: Scalable, Inverse-Free Maximum Likelihood
Estimation for Latent Gaussian Models [69.22568644711113]
We introduce probabilistic unrolling, a method that combines Monte Carlo sampling with iterative linear solvers to circumvent matrix inversions.
Our theoretical analyses reveal that unrolling and backpropagation through the iterations of the solver can accelerate gradient estimation for maximum likelihood estimation.
In experiments on simulated and real data, we demonstrate that probabilistic unrolling learns latent Gaussian models up to an order of magnitude faster than gradient EM, with minimal losses in model performance.
arXiv Detail & Related papers (2023-06-05T21:08:34Z) - Learning Graphical Factor Models with Riemannian Optimization [70.13748170371889]
This paper proposes a flexible algorithmic framework for graph learning under low-rank structural constraints.
The problem is expressed as penalized maximum likelihood estimation of an elliptical distribution.
We leverage geometries of positive definite matrices and positive semi-definite matrices of fixed rank that are well suited to elliptical models.
arXiv Detail & Related papers (2022-10-21T13:19:45Z) - uGLAD: Sparse graph recovery by optimizing deep unrolled networks [11.48281545083889]
We present a novel technique to perform sparse graph recovery by optimizing deep unrolled networks.
Our model, uGLAD, builds upon and extends the state-of-the-art model GLAD to the unsupervised setting.
We evaluate model results on synthetic Gaussian data, non-Gaussian data generated from Gene Regulatory Networks, and present a case study in anaerobic digestion.
arXiv Detail & Related papers (2022-05-23T20:20:27Z) - Learning Gaussian Mixtures with Generalised Linear Models: Precise
Asymptotics in High-dimensions [79.35722941720734]
Generalised linear models for multi-class classification problems are one of the fundamental building blocks of modern machine learning tasks.
We prove exacts characterising the estimator in high-dimensions via empirical risk minimisation.
We discuss how our theory can be applied beyond the scope of synthetic data.
arXiv Detail & Related papers (2021-06-07T16:53:56Z) - Estimating Stochastic Linear Combination of Non-linear Regressions
Efficiently and Scalably [23.372021234032363]
We show that when the sub-sample sizes are large then the estimation errors will be sacrificed by too much.
To the best of our knowledge, this is the first work that and guarantees for the lineartext+Stochasticity model.
arXiv Detail & Related papers (2020-10-19T07:15:38Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z) - Learning Gaussian Graphical Models via Multiplicative Weights [54.252053139374205]
We adapt an algorithm of Klivans and Meka based on the method of multiplicative weight updates.
The algorithm enjoys a sample complexity bound that is qualitatively similar to others in the literature.
It has a low runtime $O(mp2)$ in the case of $m$ samples and $p$ nodes, and can trivially be implemented in an online manner.
arXiv Detail & Related papers (2020-02-20T10:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.