IMACS: Image Model Attribution Comparison Summaries
- URL: http://arxiv.org/abs/2201.11196v1
- Date: Wed, 26 Jan 2022 21:35:14 GMT
- Title: IMACS: Image Model Attribution Comparison Summaries
- Authors: Eldon Schoop, Ben Wedin, Andrei Kapishnikov, Tolga Bolukbasi, Michael
Terry
- Abstract summary: We introduce IMACS, a method that combines gradient-based model attributions with aggregation and visualization techniques.
IMACS extracts salient input features from an evaluation dataset, clusters them based on similarity, then visualizes differences in model attributions for similar input features.
We show how our technique can uncover behavioral differences caused by domain shift between two models trained on satellite images.
- Score: 16.80986701058596
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Developing a suitable Deep Neural Network (DNN) often requires significant
iteration, where different model versions are evaluated and compared. While
metrics such as accuracy are a powerful means to succinctly describe a model's
performance across a dataset or to directly compare model versions,
practitioners often wish to gain a deeper understanding of the factors that
influence a model's predictions. Interpretability techniques such as
gradient-based methods and local approximations can be used to examine small
sets of inputs in fine detail, but it can be hard to determine if results from
small sets generalize across a dataset. We introduce IMACS, a method that
combines gradient-based model attributions with aggregation and visualization
techniques to summarize differences in attributions between two DNN image
models. More specifically, IMACS extracts salient input features from an
evaluation dataset, clusters them based on similarity, then visualizes
differences in model attributions for similar input features. In this work, we
introduce a framework for aggregating, summarizing, and comparing the
attribution information for two models across a dataset; present visualizations
that highlight differences between 2 image classification models; and show how
our technique can uncover behavioral differences caused by domain shift between
two models trained on satellite images.
Related papers
- Reinforcing Pre-trained Models Using Counterfactual Images [54.26310919385808]
This paper proposes a novel framework to reinforce classification models using language-guided generated counterfactual images.
We identify model weaknesses by testing the model using the counterfactual image dataset.
We employ the counterfactual images as an augmented dataset to fine-tune and reinforce the classification model.
arXiv Detail & Related papers (2024-06-19T08:07:14Z) - Image Similarity using An Ensemble of Context-Sensitive Models [2.9490616593440317]
We present a more intuitive approach to build and compare image similarity models based on labelled data.
We address the challenges of sparse sampling in the image space (R, A, B) and biases in the models trained with context-based data.
Our testing results show that the ensemble model constructed performs 5% better than the best individual context-sensitive models.
arXiv Detail & Related papers (2024-01-15T20:23:05Z) - The Importance of Downstream Networks in Digital Pathology Foundation Models [1.689369173057502]
We evaluate seven feature extractor models across three different datasets with 162 different aggregation model configurations.
We find that the performance of many current feature extractor models is notably similar.
arXiv Detail & Related papers (2023-11-29T16:54:25Z) - COSE: A Consistency-Sensitivity Metric for Saliency on Image
Classification [21.3855970055692]
We present a set of metrics that utilize vision priors to assess the performance of saliency methods on image classification tasks.
We show that although saliency methods are thought to be architecture-independent, most methods could better explain transformer-based models over convolutional-based models.
arXiv Detail & Related papers (2023-09-20T01:06:44Z) - Diffusion Models Beat GANs on Image Classification [37.70821298392606]
Diffusion models have risen to prominence as a state-of-the-art method for image generation, denoising, inpainting, super-resolution, manipulation, etc.
We present our findings that these embeddings are useful beyond the noise prediction task, as they contain discriminative information and can also be leveraged for classification.
We find that with careful feature selection and pooling, diffusion models outperform comparable generative-discriminative methods for classification tasks.
arXiv Detail & Related papers (2023-07-17T17:59:40Z) - Interpretable Differencing of Machine Learning Models [20.99877540751412]
We formalize the problem of model differencing as one of predicting a dissimilarity function of two ML models' outputs.
A Joint Surrogate Tree (JST) is composed of two conjoined decision tree surrogates for the two models.
A JST provides an intuitive representation of differences and places the changes in the context of the models' decision logic.
arXiv Detail & Related papers (2023-06-10T16:15:55Z) - Revisiting the Evaluation of Image Synthesis with GANs [55.72247435112475]
This study presents an empirical investigation into the evaluation of synthesis performance, with generative adversarial networks (GANs) as a representative of generative models.
In particular, we make in-depth analyses of various factors, including how to represent a data point in the representation space, how to calculate a fair distance using selected samples, and how many instances to use from each set.
arXiv Detail & Related papers (2023-04-04T17:54:32Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Multivariate Data Explanation by Jumping Emerging Patterns Visualization [78.6363825307044]
We present VAX (multiVariate dAta eXplanation), a new VA method to support the identification and visual interpretation of patterns in multivariate data sets.
Unlike the existing similar approaches, VAX uses the concept of Jumping Emerging Patterns to identify and aggregate several diversified patterns, producing explanations through logic combinations of data variables.
arXiv Detail & Related papers (2021-06-21T13:49:44Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z) - Improving the Reconstruction of Disentangled Representation Learners via Multi-Stage Modeling [54.94763543386523]
Current autoencoder-based disentangled representation learning methods achieve disentanglement by penalizing the ( aggregate) posterior to encourage statistical independence of the latent factors.
We present a novel multi-stage modeling approach where the disentangled factors are first learned using a penalty-based disentangled representation learning method.
Then, the low-quality reconstruction is improved with another deep generative model that is trained to model the missing correlated latent variables.
arXiv Detail & Related papers (2020-10-25T18:51:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.