Objective Prediction of Tomorrow's Affect Using Multi-Modal
Physiological Data and Personal Chronicles: A Study of Monitoring College
Student Well-being in 2020
- URL: http://arxiv.org/abs/2201.11230v1
- Date: Wed, 26 Jan 2022 23:06:20 GMT
- Title: Objective Prediction of Tomorrow's Affect Using Multi-Modal
Physiological Data and Personal Chronicles: A Study of Monitoring College
Student Well-being in 2020
- Authors: Salar Jafarlou, Jocelyn Lai, Zahra Mousavi, Sina Labbaf, Ramesh Jain,
Nikil Dutt, Jessica Borelli, Amir Rahmani
- Abstract summary: The goal of our study was to investigate the capacity to more accurately predict affect through a fully automatic and objective approach using multiple commercial devices.
Longitudinal physiological data and daily assessments of emotions were collected from a sample of college students using smart wearables and phones for over a year.
Results showed that our model was able to predict next-day affect with accuracy comparable to state of the art methods.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Monitoring and understanding affective states are important aspects of
healthy functioning and treatment of mood-based disorders. Recent advancements
of ubiquitous wearable technologies have increased the reliability of such
tools in detecting and accurately estimating mental states (e.g., mood, stress,
etc.), offering comprehensive and continuous monitoring of individuals over
time. Previous attempts to model an individual's mental state were limited to
subjective approaches or the inclusion of only a few modalities (i.e., phone,
watch). Thus, the goal of our study was to investigate the capacity to more
accurately predict affect through a fully automatic and objective approach
using multiple commercial devices. Longitudinal physiological data and daily
assessments of emotions were collected from a sample of college students using
smart wearables and phones for over a year. Results showed that our model was
able to predict next-day affect with accuracy comparable to state of the art
methods.
Related papers
- Loneliness Forecasting Using Multi-modal Wearable and Mobile Sensing in Everyday Settings [1.7253972752874662]
This study employs wearable devices, such as smart rings and watches, to monitor early physiological indicators of loneliness.
smartphones are employed to capture initial behavioral signs of loneliness.
Through the development of personalized models, we achieved a notable accuracy of 0.82 and an F-1 score of 0.82 in forecasting loneliness levels seven days in advance.
arXiv Detail & Related papers (2024-09-15T18:33:02Z) - Integrating Wearable Sensor Data and Self-reported Diaries for Personalized Affect Forecasting [2.36325543943271]
We propose a multimodal deep learning model for affect status forecasting.
This model combines a transformer encoder with a pre-trained language model, facilitating the integrated analysis of objective metrics and self-reported diaries.
Our results demonstrate that the proposed model achieves predictive accuracy of 82.50% for positive affect and 82.76% for negative affect, a full week in advance.
arXiv Detail & Related papers (2024-03-16T17:24:38Z) - Harnessing the Power of Hugging Face Transformers for Predicting Mental
Health Disorders in Social Networks [0.0]
This study explores how user-generated data can be used to predict mental disorder symptoms.
Our study compares four different BERT models of Hugging Face with standard machine learning techniques.
New models outperform the previous approach with an accuracy rate of up to 97%.
arXiv Detail & Related papers (2023-06-29T12:25:19Z) - Bias Reducing Multitask Learning on Mental Health Prediction [18.32551434711739]
There has been an increase in research in developing machine learning models for mental health detection or prediction.
In this work, we aim to perform a fairness analysis and implement a multi-task learning based bias mitigation method on anxiety prediction models.
Our analysis showed that our anxiety prediction base model introduced some bias with regards to age, income, ethnicity, and whether a participant is born in the U.S. or not.
arXiv Detail & Related papers (2022-08-07T02:28:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Designing A Clinically Applicable Deep Recurrent Model to Identify
Neuropsychiatric Symptoms in People Living with Dementia Using In-Home
Monitoring Data [52.40058724040671]
Agitation is one of the neuropsychiatric symptoms with high prevalence in dementia.
Detecting agitation episodes can assist in providing People Living with Dementia (PLWD) with early and timely interventions.
This preliminary study presents a supervised learning model to analyse the risk of agitation in PLWD using in-home monitoring data.
arXiv Detail & Related papers (2021-10-19T11:45:01Z) - Learning Language and Multimodal Privacy-Preserving Markers of Mood from
Mobile Data [74.60507696087966]
Mental health conditions remain underdiagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is daily smartphone usage.
We study behavioral markers of daily mood using a recent dataset of mobile behaviors from adolescent populations at high risk of suicidal behaviors.
arXiv Detail & Related papers (2021-06-24T17:46:03Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z) - Multimodal Privacy-preserving Mood Prediction from Mobile Data: A
Preliminary Study [34.550824104906255]
Mental health conditions remain under-diagnosed even in countries with common access to advanced medical care.
One promising data source to help monitor human behavior is from daily smartphone usage.
We study behavioral markers or daily mood using a recent dataset of mobile behaviors from high-risk adolescent populations.
arXiv Detail & Related papers (2020-12-04T01:44:22Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Anxiety Detection Leveraging Mobile Passive Sensing [53.11661460916551]
Anxiety disorders are the most common class of psychiatric problems affecting both children and adults.
Leveraging passive and unobtrusive data collection from smartphones could be a viable alternative to classical methods.
eWellness is an experimental mobile application designed to track a full-suite of sensor and user-log data off an individual's device in a continuous and passive manner.
arXiv Detail & Related papers (2020-08-09T20:22:52Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.