Human-centered mechanism design with Democratic AI
- URL: http://arxiv.org/abs/2201.11441v1
- Date: Thu, 27 Jan 2022 10:56:33 GMT
- Title: Human-centered mechanism design with Democratic AI
- Authors: Raphael Koster, Jan Balaguer, Andrea Tacchetti, Ari Weinstein, Tina
Zhu, Oliver Hauser, Duncan Williams, Lucy Campbell-Gillingham, Phoebe
Thacker, Matthew Botvinick and Christopher Summerfield
- Abstract summary: We develop a human-in-the-loop research pipeline called Democratic AI.
reinforcement learning is used to design a social mechanism that humans prefer by majority.
By optimizing for human preferences, Democratic AI may be a promising method for value-aligned policy innovation.
- Score: 9.832311262933285
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building artificial intelligence (AI) that aligns with human values is an
unsolved problem. Here, we developed a human-in-the-loop research pipeline
called Democratic AI, in which reinforcement learning is used to design a
social mechanism that humans prefer by majority. A large group of humans played
an online investment game that involved deciding whether to keep a monetary
endowment or to share it with others for collective benefit. Shared revenue was
returned to players under two different redistribution mechanisms, one designed
by the AI and the other by humans. The AI discovered a mechanism that redressed
initial wealth imbalance, sanctioned free riders, and successfully won the
majority vote. By optimizing for human preferences, Democratic AI may be a
promising method for value-aligned policy innovation.
Related papers
- Rolling in the deep of cognitive and AI biases [1.556153237434314]
We argue that there is urgent need to understand AI as a sociotechnical system, inseparable from the conditions in which it is designed, developed and deployed.
We address this critical issue by following a radical new methodology under which human cognitive biases become core entities in our AI fairness overview.
We introduce a new mapping, which justifies the humans to AI biases and we detect relevant fairness intensities and inter-dependencies.
arXiv Detail & Related papers (2024-07-30T21:34:04Z) - Navigating AI Fallibility: Examining People's Reactions and Perceptions of AI after Encountering Personality Misrepresentations [7.256711790264119]
Hyper-personalized AI systems profile people's characteristics to provide personalized recommendations.
These systems are not immune to errors when making inferences about people's most personal traits.
We present two studies to examine how people react and perceive AI after encountering personality misrepresentations.
arXiv Detail & Related papers (2024-05-25T21:27:15Z) - Human-AI Coevolution [48.74579595505374]
Coevolution AI is a process in which humans and AI algorithms continuously influence each other.
This paper introduces Coevolution AI as the cornerstone for a new field of study at the intersection between AI and complexity science.
arXiv Detail & Related papers (2023-06-23T18:10:54Z) - Fairness in AI and Its Long-Term Implications on Society [68.8204255655161]
We take a closer look at AI fairness and analyze how lack of AI fairness can lead to deepening of biases over time.
We discuss how biased models can lead to more negative real-world outcomes for certain groups.
If the issues persist, they could be reinforced by interactions with other risks and have severe implications on society in the form of social unrest.
arXiv Detail & Related papers (2023-04-16T11:22:59Z) - Best-Response Bayesian Reinforcement Learning with Bayes-adaptive POMDPs
for Centaurs [22.52332536886295]
We present a novel formulation of the interaction between the human and the AI as a sequential game.
We show that in this case the AI's problem of helping bounded-rational humans make better decisions reduces to a Bayes-adaptive POMDP.
We discuss ways in which the machine can learn to improve upon its own limitations as well with the help of the human.
arXiv Detail & Related papers (2022-04-03T21:00:51Z) - Cybertrust: From Explainable to Actionable and Interpretable AI (AI2) [58.981120701284816]
Actionable and Interpretable AI (AI2) will incorporate explicit quantifications and visualizations of user confidence in AI recommendations.
It will allow examining and testing of AI system predictions to establish a basis for trust in the systems' decision making.
arXiv Detail & Related papers (2022-01-26T18:53:09Z) - The Turing Trap: The Promise & Peril of Human-Like Artificial
Intelligence [1.9143819780453073]
The benefits of human-like artificial intelligence include soaring productivity, increased leisure, and perhaps most profoundly, a better understanding of our own minds.
But not all types of AI are human-like. In fact, many of the most powerful systems are very different from humans.
As machines become better substitutes for human labor, workers lose economic and political bargaining power.
In contrast, when AI is focused on augmenting humans rather than mimicking them, then humans retain the power to insist on a share of the value created.
arXiv Detail & Related papers (2022-01-11T21:07:17Z) - Trustworthy AI: A Computational Perspective [54.80482955088197]
We focus on six of the most crucial dimensions in achieving trustworthy AI: (i) Safety & Robustness, (ii) Non-discrimination & Fairness, (iii) Explainability, (iv) Privacy, (v) Accountability & Auditability, and (vi) Environmental Well-Being.
For each dimension, we review the recent related technologies according to a taxonomy and summarize their applications in real-world systems.
arXiv Detail & Related papers (2021-07-12T14:21:46Z) - Multi-Principal Assistance Games [11.85513759444069]
Impossibility theorems in social choice theory and voting theory can be applied to such games.
We analyze in particular a bandit apprentice game in which the humans act first to demonstrate their individual preferences for the arms.
We propose a social choice method that uses shared control of a system to combine preference inference with social welfare optimization.
arXiv Detail & Related papers (2020-07-19T00:23:25Z) - Is the Most Accurate AI the Best Teammate? Optimizing AI for Teamwork [54.309495231017344]
We argue that AI systems should be trained in a human-centered manner, directly optimized for team performance.
We study this proposal for a specific type of human-AI teaming, where the human overseer chooses to either accept the AI recommendation or solve the task themselves.
Our experiments with linear and non-linear models on real-world, high-stakes datasets show that the most accuracy AI may not lead to highest team performance.
arXiv Detail & Related papers (2020-04-27T19:06:28Z) - Effect of Confidence and Explanation on Accuracy and Trust Calibration
in AI-Assisted Decision Making [53.62514158534574]
We study whether features that reveal case-specific model information can calibrate trust and improve the joint performance of the human and AI.
We show that confidence score can help calibrate people's trust in an AI model, but trust calibration alone is not sufficient to improve AI-assisted decision making.
arXiv Detail & Related papers (2020-01-07T15:33:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.