Self Semi Supervised Neural Architecture Search for Semantic
Segmentation
- URL: http://arxiv.org/abs/2201.12646v2
- Date: Tue, 1 Feb 2022 04:16:47 GMT
- Title: Self Semi Supervised Neural Architecture Search for Semantic
Segmentation
- Authors: Lo\"ic Pauletto and Massih-Reza Amini and Nicolas Winckler
- Abstract summary: We propose a Neural Architecture Search strategy based on self supervision and semi-supervised learning for the task of semantic segmentation.
Our approach builds an optimized neural network model for this task.
Experiments on the Cityscapes and PASCAL VOC 2012 datasets demonstrate that the discovered neural network is more efficient than a state-of-the-art hand-crafted NN model.
- Score: 6.488575826304023
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this paper, we propose a Neural Architecture Search strategy based on self
supervision and semi-supervised learning for the task of semantic segmentation.
Our approach builds an optimized neural network (NN) model for this task by
jointly solving a jigsaw pretext task discovered with self-supervised learning
over unlabeled training data, and, exploiting the structure of the unlabeled
data with semi-supervised learning. The search of the architecture of the NN
model is performed by dynamic routing using a gradient descent algorithm.
Experiments on the Cityscapes and PASCAL VOC 2012 datasets demonstrate that the
discovered neural network is more efficient than a state-of-the-art
hand-crafted NN model with four times less floating operations.
Related papers
- Informed deep hierarchical classification: a non-standard analysis inspired approach [0.0]
It consists in a multi-output deep neural network equipped with specific projection operators placed before each output layer.
The design of such an architecture, called lexicographic hybrid deep neural network (LH-DNN), has been possible by combining tools from different and quite distant research fields.
To assess the efficacy of the approach, the resulting network is compared against the B-CNN, a convolutional neural network tailored for hierarchical classification tasks.
arXiv Detail & Related papers (2024-09-25T14:12:50Z) - Analyzing Populations of Neural Networks via Dynamical Model Embedding [10.455447557943463]
A core challenge in the interpretation of deep neural networks is identifying commonalities between the underlying algorithms implemented by distinct networks trained for the same task.
Motivated by this problem, we introduce DYNAMO, an algorithm that constructs low-dimensional manifold where each point corresponds to a neural network model, and two points are nearby if the corresponding neural networks enact similar high-level computational processes.
DYNAMO takes as input a collection of pre-trained neural networks and outputs a meta-model that emulates the dynamics of the hidden states as well as the outputs of any model in the collection.
arXiv Detail & Related papers (2023-02-27T19:00:05Z) - Recurrent Neural Networks with Mixed Hierarchical Structures and EM
Algorithm for Natural Language Processing [9.645196221785694]
We develop an approach called the latent indicator layer to identify and learn implicit hierarchical information.
We also develop an EM algorithm to handle the latent indicator layer in training.
We show that the EM-HRNN model with bootstrap training outperforms other RNN-based models in document classification tasks.
arXiv Detail & Related papers (2022-01-21T23:08:33Z) - Self-Denoising Neural Networks for Few Shot Learning [66.38505903102373]
We present a new training scheme that adds noise at multiple stages of an existing neural architecture while simultaneously learning to be robust to this added noise.
This architecture, which we call a Self-Denoising Neural Network (SDNN), can be applied easily to most modern convolutional neural architectures.
arXiv Detail & Related papers (2021-10-26T03:28:36Z) - Efficient Neural Architecture Search with Performance Prediction [0.0]
We use a neural architecture search to find the best network architecture for the task at hand.
Existing NAS algorithms generally evaluate the fitness of a new architecture by fully training from scratch.
An end-to-end offline performance predictor is proposed to accelerate the evaluation of sampled architectures.
arXiv Detail & Related papers (2021-08-04T05:44:16Z) - Self-Learning for Received Signal Strength Map Reconstruction with
Neural Architecture Search [63.39818029362661]
We present a model based on Neural Architecture Search (NAS) and self-learning for received signal strength ( RSS) map reconstruction.
The approach first finds an optimal NN architecture and simultaneously train the deduced model over some ground-truth measurements of a given ( RSS) map.
Experimental results show that signal predictions of this second model outperforms non-learning based state-of-the-art techniques and NN models with no architecture search.
arXiv Detail & Related papers (2021-05-17T12:19:22Z) - PredRNN: A Recurrent Neural Network for Spatiotemporal Predictive
Learning [109.84770951839289]
We present PredRNN, a new recurrent network for learning visual dynamics from historical context.
We show that our approach obtains highly competitive results on three standard datasets.
arXiv Detail & Related papers (2021-03-17T08:28:30Z) - Anomaly Detection on Attributed Networks via Contrastive Self-Supervised
Learning [50.24174211654775]
We present a novel contrastive self-supervised learning framework for anomaly detection on attributed networks.
Our framework fully exploits the local information from network data by sampling a novel type of contrastive instance pair.
A graph neural network-based contrastive learning model is proposed to learn informative embedding from high-dimensional attributes and local structure.
arXiv Detail & Related papers (2021-02-27T03:17:20Z) - Evolutionary Architecture Search for Graph Neural Networks [23.691915813153496]
We propose a novel AutoML framework through the evolution of individual models in a large Graph Neural Networks (GNN) architecture space.
To the best of our knowledge, this is the first work to introduce and evaluate evolutionary architecture search for GNN models.
arXiv Detail & Related papers (2020-09-21T22:11:53Z) - Neural Architecture Search For LF-MMI Trained Time Delay Neural Networks [61.76338096980383]
A range of neural architecture search (NAS) techniques are used to automatically learn two types of hyper- parameters of state-of-the-art factored time delay neural networks (TDNNs)
These include the DARTS method integrating architecture selection with lattice-free MMI (LF-MMI) TDNN training.
Experiments conducted on a 300-hour Switchboard corpus suggest the auto-configured systems consistently outperform the baseline LF-MMI TDNN systems.
arXiv Detail & Related papers (2020-07-17T08:32:11Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.