Faster Convergence of Local SGD for Over-Parameterized Models
- URL: http://arxiv.org/abs/2201.12719v3
- Date: Mon, 10 Jun 2024 15:04:22 GMT
- Title: Faster Convergence of Local SGD for Over-Parameterized Models
- Authors: Tiancheng Qin, S. Rasoul Etesami, César A. Uribe,
- Abstract summary: Modern machine learning architectures are often highly expressive.
We analyze the convergence of Local SGD (or FedAvg) for such over-parameterized functions in heterogeneous data setting.
For general convex loss functions, we establish an error bound $O(K/T)$ otherwise.
For non-loss functions, we prove an error bound $O(K/T)$ in both cases.
We complete our results by providing problem instances in which our established convergence rates are tight to a constant factor with a reasonably small stepsize.
- Score: 1.5504102675587357
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern machine learning architectures are often highly expressive. They are usually over-parameterized and can interpolate the data by driving the empirical loss close to zero. We analyze the convergence of Local SGD (or FedAvg) for such over-parameterized models in the heterogeneous data setting and improve upon the existing literature by establishing the following convergence rates. For general convex loss functions, we establish an error bound of $\O(1/T)$ under a mild data similarity assumption and an error bound of $\O(K/T)$ otherwise, where $K$ is the number of local steps and $T$ is the total number of iterations. For non-convex loss functions we prove an error bound of $\O(K/T)$. These bounds improve upon the best previous bound of $\O(1/\sqrt{nT})$ in both cases, where $n$ is the number of nodes, when no assumption on the model being over-parameterized is made. We complete our results by providing problem instances in which our established convergence rates are tight to a constant factor with a reasonably small stepsize. Finally, we validate our theoretical results by performing large-scale numerical experiments that reveal the convergence behavior of Local SGD for practical over-parameterized deep learning models, in which the $\O(1/T)$ convergence rate of Local SGD is clearly shown.
Related papers
- Convergence Rate Analysis of LION [54.28350823319057]
LION converges iterations of $cal(sqrtdK-)$ measured by gradient Karush-Kuhn-T (sqrtdK-)$.
We show that LION can achieve lower loss and higher performance compared to standard SGD.
arXiv Detail & Related papers (2024-11-12T11:30:53Z) - MGDA Converges under Generalized Smoothness, Provably [27.87166415148172]
Multi-objective optimization (MOO) is receiving more attention in various fields such as multi-task learning.
Recent works provide some effective algorithms with theoretical analysis but they are limited by the standard $L$-smooth or bounded-gradient assumptions.
We study a more general and realistic class of generalized $ell$-smooth loss functions, where $ell$ is a general non-decreasing function of gradient norm.
arXiv Detail & Related papers (2024-05-29T18:36:59Z) - A Specialized Semismooth Newton Method for Kernel-Based Optimal
Transport [92.96250725599958]
Kernel-based optimal transport (OT) estimators offer an alternative, functional estimation procedure to address OT problems from samples.
We show that our SSN method achieves a global convergence rate of $O (1/sqrtk)$, and a local quadratic convergence rate under standard regularity conditions.
arXiv Detail & Related papers (2023-10-21T18:48:45Z) - Convergence Analysis of Decentralized ASGD [1.8710230264817358]
We present a novel convergence-rate analysis for decentralized asynchronous SGD (DASGD) which does not require partial synchronization among nodes nor restrictive network topologies.
Our convergence proof holds for a fixed stepsize and any nonsmooth, homogeneous, L-shaped objective function.
arXiv Detail & Related papers (2023-09-07T14:50:31Z) - Empirical Risk Minimization with Shuffled SGD: A Primal-Dual Perspective
and Improved Bounds [12.699376765058137]
gradient descent (SGD) is perhaps the most prevalent optimization method in modern machine learning.
It is only very recently that SGD with sampling without replacement -- shuffled SGD -- has been analyzed.
We prove fine-grained complexity bounds that depend on the data matrix and are never worse than what is predicted by the existing bounds.
arXiv Detail & Related papers (2023-06-21T18:14:44Z) - Towards Faster Non-Asymptotic Convergence for Diffusion-Based Generative
Models [49.81937966106691]
We develop a suite of non-asymptotic theory towards understanding the data generation process of diffusion models.
In contrast to prior works, our theory is developed based on an elementary yet versatile non-asymptotic approach.
arXiv Detail & Related papers (2023-06-15T16:30:08Z) - Improved Convergence Rates for Sparse Approximation Methods in
Kernel-Based Learning [48.08663378234329]
Kernel-based models such as kernel ridge regression and Gaussian processes are ubiquitous in machine learning applications.
Existing sparse approximation methods can yield a significant reduction in the computational cost.
We provide novel confidence intervals for the Nystr"om method and the sparse variational Gaussian processes approximation method.
arXiv Detail & Related papers (2022-02-08T17:22:09Z) - An Improved Analysis of Gradient Tracking for Decentralized Machine
Learning [34.144764431505486]
We consider decentralized machine learning over a network where the training data is distributed across $n$ agents.
The agent's common goal is to find a model that minimizes the average of all local loss functions.
We improve the dependency on $p$ from $mathcalO(p-1)$ to $mathcalO(p-1)$ in the noiseless case.
arXiv Detail & Related papers (2022-02-08T12:58:14Z) - Gradient-Based Empirical Risk Minimization using Local Polynomial
Regression [39.29885444997579]
A major goal of this literature has been to compare different algorithms, such as gradient descent (GD) or gradient descent (SGD)
We demonstrate that when the loss function is smooth in the data, we can learn the oracle at every iteration and beat the oracle complexities of both GD and SGD.
arXiv Detail & Related papers (2020-11-04T20:10:31Z) - On the Almost Sure Convergence of Stochastic Gradient Descent in
Non-Convex Problems [75.58134963501094]
This paper analyzes the trajectories of gradient descent (SGD)
We show that SGD avoids saddle points/manifolds with $1$ for strict step-size policies.
arXiv Detail & Related papers (2020-06-19T14:11:26Z) - A Simple Convergence Proof of Adam and Adagrad [74.24716715922759]
We show a proof of convergence between the Adam Adagrad and $O(d(N)/st)$ algorithms.
Adam converges with the same convergence $O(d(N)/st)$ when used with the default parameters.
arXiv Detail & Related papers (2020-03-05T01:56:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.