Progressive Distillation for Fast Sampling of Diffusion Models
- URL: http://arxiv.org/abs/2202.00512v1
- Date: Tue, 1 Feb 2022 16:07:25 GMT
- Title: Progressive Distillation for Fast Sampling of Diffusion Models
- Authors: Tim Salimans and Jonathan Ho
- Abstract summary: We present a method to distill a trained deterministic diffusion sampler, using many steps, into a new diffusion model that takes half as many sampling steps.
On standard image generation benchmarks like CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers taking as many as 8192 steps, and are able to distill down to models taking as few as 4 steps without losing much perceptual quality.
- Score: 17.355749359987648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Diffusion models have recently shown great promise for generative modeling,
outperforming GANs on perceptual quality and autoregressive models at density
estimation. A remaining downside is their slow sampling time: generating high
quality samples takes many hundreds or thousands of model evaluations. Here we
make two contributions to help eliminate this downside: First, we present new
parameterizations of diffusion models that provide increased stability when
using few sampling steps. Second, we present a method to distill a trained
deterministic diffusion sampler, using many steps, into a new diffusion model
that takes half as many sampling steps. We then keep progressively applying
this distillation procedure to our model, halving the number of required
sampling steps each time. On standard image generation benchmarks like
CIFAR-10, ImageNet, and LSUN, we start out with state-of-the-art samplers
taking as many as 8192 steps, and are able to distill down to models taking as
few as 4 steps without losing much perceptual quality; achieving, for example,
a FID of 3.0 on CIFAR-10 in 4 steps. Finally, we show that the full progressive
distillation procedure does not take more time than it takes to train the
original model, thus representing an efficient solution for generative modeling
using diffusion at both train and test time.
Related papers
- One Step Diffusion via Shortcut Models [109.72495454280627]
We introduce shortcut models, a family of generative models that use a single network and training phase to produce high-quality samples.
Shortcut models condition the network on the current noise level and also on the desired step size, allowing the model to skip ahead in the generation process.
Compared to distillation, shortcut models reduce complexity to a single network and training phase and additionally allow varying step budgets at inference time.
arXiv Detail & Related papers (2024-10-16T13:34:40Z) - Provable Statistical Rates for Consistency Diffusion Models [87.28777947976573]
Despite the state-of-the-art performance, diffusion models are known for their slow sample generation due to the extensive number of steps involved.
This paper contributes towards the first statistical theory for consistency models, formulating their training as a distribution discrepancy minimization problem.
arXiv Detail & Related papers (2024-06-23T20:34:18Z) - Multistep Distillation of Diffusion Models via Moment Matching [29.235113968156433]
We present a new method for making diffusion models faster to sample.
The method distills many-step diffusion models into few-step models by matching conditional expectations of the clean data.
We obtain new state-of-the-art results on the Imagenet dataset.
arXiv Detail & Related papers (2024-06-06T14:20:21Z) - EM Distillation for One-step Diffusion Models [65.57766773137068]
We propose a maximum likelihood-based approach that distills a diffusion model to a one-step generator model with minimal loss of quality.
We develop a reparametrized sampling scheme and a noise cancellation technique that together stabilizes the distillation process.
arXiv Detail & Related papers (2024-05-27T05:55:22Z) - Directly Denoising Diffusion Models [6.109141407163027]
We present Directly Denoising Diffusion Model (DDDM), a simple and generic approach for generating realistic images with few-step sampling.
Our model achieves FID scores of 2.57 and 2.33 on CIFAR-10 in one-step and two-step sampling respectively, surpassing those obtained from GANs and distillation-based models.
For ImageNet 64x64, our approach stands as a competitive contender against leading models.
arXiv Detail & Related papers (2024-05-22T11:20:32Z) - Adversarial Diffusion Distillation [18.87099764514747]
Adversarial Diffusion Distillation (ADD) is a novel training approach that efficiently samples large-scale foundational image diffusion models in just 1-4 steps.
We use score distillation to leverage large-scale off-the-shelf image diffusion models as a teacher signal.
Our model clearly outperforms existing few-step methods in a single step and reaches the performance of state-of-the-art diffusion models (SDXL) in only four steps.
arXiv Detail & Related papers (2023-11-28T18:53:24Z) - Consistency Models [89.68380014789861]
We propose a new family of models that generate high quality samples by directly mapping noise to data.
They support fast one-step generation by design, while still allowing multistep sampling to trade compute for sample quality.
They also support zero-shot data editing, such as image inpainting, colorization, and super-resolution, without requiring explicit training.
arXiv Detail & Related papers (2023-03-02T18:30:16Z) - On Distillation of Guided Diffusion Models [94.95228078141626]
We propose an approach to distilling classifier-free guided diffusion models into models that are fast to sample from.
For standard diffusion models trained on the pixelspace, our approach is able to generate images visually comparable to that of the original model.
For diffusion models trained on the latent-space (e.g., Stable Diffusion), our approach is able to generate high-fidelity images using as few as 1 to 4 denoising steps.
arXiv Detail & Related papers (2022-10-06T18:03:56Z) - ProDiff: Progressive Fast Diffusion Model For High-Quality
Text-to-Speech [63.780196620966905]
We propose ProDiff, on progressive fast diffusion model for high-quality text-to-speech.
ProDiff parameterizes the denoising model by directly predicting clean data to avoid distinct quality degradation in accelerating sampling.
Our evaluation demonstrates that ProDiff needs only 2 iterations to synthesize high-fidelity mel-spectrograms.
ProDiff enables a sampling speed of 24x faster than real-time on a single NVIDIA 2080Ti GPU.
arXiv Detail & Related papers (2022-07-13T17:45:43Z) - Learning Fast Samplers for Diffusion Models by Differentiating Through
Sample Quality [44.37533757879762]
We introduce Differentiable Diffusion Sampler Search (DDSS), a method that optimize fast samplers for any pre-trained diffusion model.
We also present Generalized Gaussian Diffusion Models (GGDM), a family of flexible non-Markovian samplers for diffusion models.
Our method is compatible with any pre-trained diffusion model without fine-tuning or re-training required.
arXiv Detail & Related papers (2022-02-11T18:53:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.