Generative Flow Networks for Discrete Probabilistic Modeling
- URL: http://arxiv.org/abs/2202.01361v1
- Date: Thu, 3 Feb 2022 01:27:11 GMT
- Title: Generative Flow Networks for Discrete Probabilistic Modeling
- Authors: Dinghuai Zhang, Nikolay Malkin, Zhen Liu, Alexandra Volokhova, Aaron
Courville, Yoshua Bengio
- Abstract summary: We present energy-based generative flow networks (EB-GFN)
EB-GFN is a novel probabilistic modeling algorithm for high-dimensional discrete data.
We show how GFlowNets can approximately perform large-block Gibbs sampling to mix between modes.
- Score: 118.81967600750428
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present energy-based generative flow networks (EB-GFN), a novel
probabilistic modeling algorithm for high-dimensional discrete data. Building
upon the theory of generative flow networks (GFlowNets), we model the
generation process by a stochastic data construction policy and thus amortize
expensive MCMC exploration into a fixed number of actions sampled from a
GFlowNet. We show how GFlowNets can approximately perform large-block Gibbs
sampling to mix between modes. We propose a framework to jointly train a
GFlowNet with an energy function, so that the GFlowNet learns to sample from
the energy distribution, while the energy learns with an approximate MLE
objective with negative samples from the GFlowNet. We demonstrate EB-GFN's
effectiveness on various probabilistic modeling tasks.
Related papers
- Improving GFlowNets with Monte Carlo Tree Search [6.497027864860203]
Recent studies have revealed strong connections between GFlowNets and entropy-regularized reinforcement learning.
We propose to enhance planning capabilities of GFlowNets by applying Monte Carlo Tree Search (MCTS)
Our experiments demonstrate that this approach improves the sample efficiency of GFlowNet training and the generation fidelity of pre-trained GFlowNet models.
arXiv Detail & Related papers (2024-06-19T15:58:35Z) - Baking Symmetry into GFlowNets [58.932776403471635]
GFlowNets have exhibited promising performance in generating diverse candidates with high rewards.
This study aims to integrate symmetries into GFlowNets by identifying equivalent actions during the generation process.
arXiv Detail & Related papers (2024-06-08T10:11:10Z) - Generative Flow Networks as Entropy-Regularized RL [4.857649518812728]
generative flow networks (GFlowNets) are a method of training a policy to sample compositional objects with proportional probabilities to a given reward via a sequence of actions.
We demonstrate how the task of learning a generative flow network can be efficiently as an entropy-regularized reinforcement learning problem.
Contrary to previously reported results, we show that entropic RL approaches can be competitive against established GFlowNet training methods.
arXiv Detail & Related papers (2023-10-19T17:31:40Z) - Stochastic Generative Flow Networks [89.34644133901647]
Generative Flow Networks (or GFlowNets) learn to sample complex structures through the lens of "inference as control"
Existing GFlowNets can be applied only to deterministic environments, and fail in more general tasks with dynamics.
This paper introduces GFlowNets, a new algorithm that extends GFlowNets to environments.
arXiv Detail & Related papers (2023-02-19T03:19:40Z) - A theory of continuous generative flow networks [104.93913776866195]
Generative flow networks (GFlowNets) are amortized variational inference algorithms that are trained to sample from unnormalized target distributions.
We present a theory for generalized GFlowNets, which encompasses both existing discrete GFlowNets and ones with continuous or hybrid state spaces.
arXiv Detail & Related papers (2023-01-30T00:37:56Z) - Bayesian Structure Learning with Generative Flow Networks [85.84396514570373]
In Bayesian structure learning, we are interested in inferring a distribution over the directed acyclic graph (DAG) from data.
Recently, a class of probabilistic models, called Generative Flow Networks (GFlowNets), have been introduced as a general framework for generative modeling.
We show that our approach, called DAG-GFlowNet, provides an accurate approximation of the posterior over DAGs.
arXiv Detail & Related papers (2022-02-28T15:53:10Z) - GFlowNet Foundations [66.69854262276391]
Generative Flow Networks (GFlowNets) have been introduced as a method to sample a diverse set of candidates in an active learning context.
We show a number of additional theoretical properties of GFlowNets.
arXiv Detail & Related papers (2021-11-17T17:59:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.