Resource Management and Security Scheme of ICPSs and IoT Based on VNE
Algorithm
- URL: http://arxiv.org/abs/2202.01375v1
- Date: Thu, 3 Feb 2022 02:27:20 GMT
- Title: Resource Management and Security Scheme of ICPSs and IoT Based on VNE
Algorithm
- Authors: Peiying Zhang, Chao Wang, Chunxiao Jiang, Neeraj Kumar, and Qinghua Lu
- Abstract summary: We propose a virtual network embedded (VNE) algorithm to ensure the rationality and security of resource allocation in ICPSs.
In particular, we use reinforcement learning (RL) method as a means to improve algorithm performance.
This is a comprehensive two-stage RL-VNE algorithm considering the constraints of computing, storage and security three-dimensional resources.
- Score: 28.48822311639421
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The development of Intelligent Cyber-Physical Systems (ICPSs) in virtual
network environment is facing severe challenges. On the one hand, the Internet
of things (IoT) based on ICPSs construction needs a large amount of reasonable
network resources support. On the other hand, ICPSs are facing severe network
security problems. The integration of ICPSs and network virtualization (NV) can
provide more efficient network resource support and security guarantees for IoT
users. Based on the above two problems faced by ICPSs, we propose a virtual
network embedded (VNE) algorithm with computing, storage resources and security
constraints to ensure the rationality and security of resource allocation in
ICPSs. In particular, we use reinforcement learning (RL) method as a means to
improve algorithm performance. We extract the important attribute
characteristics of underlying network as the training environment of RL agent.
Agent can derive the optimal node embedding strategy through training, so as to
meet the requirements of ICPSs for resource management and security. The
embedding of virtual links is based on the breadth first search (BFS) strategy.
Therefore, this is a comprehensive two-stage RL-VNE algorithm considering the
constraints of computing, storage and security three-dimensional resources.
Finally, we design a large number of simulation experiments from the
perspective of typical indicators of VNE algorithms. The experimental results
effectively illustrate the effectiveness of the algorithm in the application of
ICPSs.
Related papers
- Joint Admission Control and Resource Allocation of Virtual Network Embedding via Hierarchical Deep Reinforcement Learning [69.00997996453842]
We propose a deep Reinforcement Learning approach to learn a joint Admission Control and Resource Allocation policy for virtual network embedding.
We show that HRL-ACRA outperforms state-of-the-art baselines in terms of both the acceptance ratio and long-term average revenue.
arXiv Detail & Related papers (2024-06-25T07:42:30Z) - DNN Partitioning, Task Offloading, and Resource Allocation in Dynamic Vehicular Networks: A Lyapunov-Guided Diffusion-Based Reinforcement Learning Approach [49.56404236394601]
We formulate the problem of joint DNN partitioning, task offloading, and resource allocation in Vehicular Edge Computing.
Our objective is to minimize the DNN-based task completion time while guaranteeing the system stability over time.
We propose a Multi-Agent Diffusion-based Deep Reinforcement Learning (MAD2RL) algorithm, incorporating the innovative use of diffusion models.
arXiv Detail & Related papers (2024-06-11T06:31:03Z) - Generative AI-enabled Quantum Computing Networks and Intelligent
Resource Allocation [80.78352800340032]
Quantum computing networks execute large-scale generative AI computation tasks and advanced quantum algorithms.
efficient resource allocation in quantum computing networks is a critical challenge due to qubit variability and network complexity.
We introduce state-of-the-art reinforcement learning (RL) algorithms, from generative learning to quantum machine learning for optimal quantum resource allocation.
arXiv Detail & Related papers (2024-01-13T17:16:38Z) - Multi Objective Resource Optimization of Wireless Network Based on Cross
Domain Virtual Network Embedding [6.019028366261091]
This paper implements a multi-objective optimization VNE algorithm for wireless network resource allocation.
According to the proposed objective formula, we consider the optimization mapping cost, network delay and VNR acceptance rate.
arXiv Detail & Related papers (2022-02-03T07:26:10Z) - Network Resource Allocation Strategy Based on Deep Reinforcement
Learning [4.751282319342761]
This paper proposes a two-stage VNE algorithm based on deep reinforcement learning (DRL) (TS-DRL-VNE)
For the problem that the existing VNE algorithm based on ML often ignores the importance of substrate network representation and training mode, a DRL VNE algorithm based on full attribute matrix (FAM-DRL-VNE) is proposed.
Experimental results show that the above algorithm is superior to other algorithms.
arXiv Detail & Related papers (2022-02-03T06:53:00Z) - A Heuristically Assisted Deep Reinforcement Learning Approach for
Network Slice Placement [0.7885276250519428]
We introduce a hybrid placement solution based on Deep Reinforcement Learning (DRL) and a dedicated optimization based on the Power of Two Choices principle.
The proposed Heuristically-Assisted DRL (HA-DRL) allows to accelerate the learning process and gain in resource usage when compared against other state-of-the-art approaches.
arXiv Detail & Related papers (2021-05-14T10:04:17Z) - Reconfigurable Intelligent Surface Assisted Mobile Edge Computing with
Heterogeneous Learning Tasks [53.1636151439562]
Mobile edge computing (MEC) provides a natural platform for AI applications.
We present an infrastructure to perform machine learning tasks at an MEC with the assistance of a reconfigurable intelligent surface (RIS)
Specifically, we minimize the learning error of all participating users by jointly optimizing transmit power of mobile users, beamforming vectors of the base station, and the phase-shift matrix of the RIS.
arXiv Detail & Related papers (2020-12-25T07:08:50Z) - When Deep Reinforcement Learning Meets Federated Learning: Intelligent
Multi-Timescale Resource Management for Multi-access Edge Computing in 5G
Ultra Dense Network [31.274279003934268]
We first propose an intelligent ultra-dense edge computing (I-UDEC) framework, which integrates blockchain and AI into 5G edge computing networks.
In order to achieve real-time and low overhead computation offloading decisions and resource allocation strategies, we design a novel two-timescale deep reinforcement learning (textit2Ts-DRL) approach.
Our proposed algorithm can reduce task execution time up to 31.87%.
arXiv Detail & Related papers (2020-09-22T15:08:00Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - RIS Enhanced Massive Non-orthogonal Multiple Access Networks: Deployment
and Passive Beamforming Design [116.88396201197533]
A novel framework is proposed for the deployment and passive beamforming design of a reconfigurable intelligent surface (RIS)
The problem of joint deployment, phase shift design, as well as power allocation is formulated for maximizing the energy efficiency.
A novel long short-term memory (LSTM) based echo state network (ESN) algorithm is proposed to predict users' tele-traffic demand by leveraging a real dataset.
A decaying double deep Q-network (D3QN) based position-acquisition and phase-control algorithm is proposed to solve the joint problem of deployment and design of the RIS.
arXiv Detail & Related papers (2020-01-28T14:37:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.