How to build a cognitive map: insights from models of the hippocampal
formation
- URL: http://arxiv.org/abs/2202.01682v1
- Date: Thu, 3 Feb 2022 16:49:37 GMT
- Title: How to build a cognitive map: insights from models of the hippocampal
formation
- Authors: James C.R. Whittington, David McCaffary, Jacob J.W. Bakermans, Timothy
E.J. Behrens
- Abstract summary: The concept of a cognitive map has emerged as one of the leading metaphors for these capacities.
unravelling the learning and neural representation of such a map has become a central focus of neuroscience.
- Score: 0.45880283710344055
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Learning and interpreting the structure of the environment is an innate
feature of biological systems, and is integral to guiding flexible behaviours
for evolutionary viability. The concept of a cognitive map has emerged as one
of the leading metaphors for these capacities, and unravelling the learning and
neural representation of such a map has become a central focus of neuroscience.
While experimentalists are providing a detailed picture of the neural substrate
of cognitive maps in hippocampus and beyond, theorists have been busy building
models to bridge the divide between neurons, computation, and behaviour. These
models can account for a variety of known representations and neural phenomena,
but often provide a differing understanding of not only the underlying
principles of cognitive maps, but also the respective roles of hippocampus and
cortex. In this Perspective, we bring many of these models into a common
language, distil their underlying principles of constructing cognitive maps,
provide novel (re)interpretations for neural phenomena, suggest how the
principles can be extended to account for prefrontal cortex representations
and, finally, speculate on the role of cognitive maps in higher cognitive
capacities.
Related papers
- Brain-Inspired Machine Intelligence: A Survey of
Neurobiologically-Plausible Credit Assignment [65.268245109828]
We examine algorithms for conducting credit assignment in artificial neural networks that are inspired or motivated by neurobiology.
We organize the ever-growing set of brain-inspired learning schemes into six general families and consider these in the context of backpropagation of errors.
The results of this review are meant to encourage future developments in neuro-mimetic systems and their constituent learning processes.
arXiv Detail & Related papers (2023-12-01T05:20:57Z) - A Goal-Driven Approach to Systems Neuroscience [2.6451153531057985]
Humans and animals exhibit a range of interesting behaviors in dynamic environments.
It is unclear how our brains actively reformat this dense sensory information to enable these behaviors.
We offer a new definition of interpretability that we show has promise in yielding unified structural and functional models of neural circuits.
arXiv Detail & Related papers (2023-11-05T16:37:53Z) - Contrastive-Signal-Dependent Plasticity: Self-Supervised Learning in Spiking Neural Circuits [61.94533459151743]
This work addresses the challenge of designing neurobiologically-motivated schemes for adjusting the synapses of spiking networks.
Our experimental simulations demonstrate a consistent advantage over other biologically-plausible approaches when training recurrent spiking networks.
arXiv Detail & Related papers (2023-03-30T02:40:28Z) - Rejecting Cognitivism: Computational Phenomenology for Deep Learning [5.070542698701158]
We propose a non-representationalist framework for deep learning relying on a novel method: computational phenomenology.
We reject the modern cognitivist interpretation of deep learning, according to which artificial neural networks encode representations of external entities.
arXiv Detail & Related papers (2023-02-16T20:05:06Z) - Brain Cortical Functional Gradients Predict Cortical Folding Patterns
via Attention Mesh Convolution [51.333918985340425]
We develop a novel attention mesh convolution model to predict cortical gyro-sulcal segmentation maps on individual brains.
Experiments show that the prediction performance via our model outperforms other state-of-the-art models.
arXiv Detail & Related papers (2022-05-21T14:08:53Z) - An explainability framework for cortical surface-based deep learning [110.83289076967895]
We develop a framework for cortical surface-based deep learning.
First, we adapted a perturbation-based approach for use with surface data.
We show that our explainability framework is not only able to identify important features and their spatial location but that it is also reliable and valid.
arXiv Detail & Related papers (2022-03-15T23:16:49Z) - Neural Network based Successor Representations of Space and Language [6.748976209131109]
We present a neural network based approach to learn multi-scale successor representations of structured knowledge.
In all scenarios, the neural network correctly learns and approximates the underlying structure by building successor representations.
We conclude that cognitive maps and neural network-based successor representations of structured knowledge provide a promising way to overcome some of the short comings of deep learning towards artificial general intelligence.
arXiv Detail & Related papers (2022-02-22T21:52:46Z) - On the Evolution of Neuron Communities in a Deep Learning Architecture [0.7106986689736827]
This paper examines the neuron activation patterns of deep learning-based classification models.
We show that both the community quality (modularity) and entropy are closely related to the deep learning models' performances.
arXiv Detail & Related papers (2021-06-08T21:09:55Z) - Towards a Predictive Processing Implementation of the Common Model of
Cognition [79.63867412771461]
We describe an implementation of the common model of cognition grounded in neural generative coding and holographic associative memory.
The proposed system creates the groundwork for developing agents that learn continually from diverse tasks as well as model human performance at larger scales.
arXiv Detail & Related papers (2021-05-15T22:55:23Z) - Towards a Neural Model for Serial Order in Frontal Cortex: a Brain
Theory from Memory Development to Higher-Level Cognition [53.816853325427424]
We propose that the immature prefrontal cortex (PFC) use its primary functionality of detecting hierarchical patterns in temporal signals.
Our hypothesis is that the PFC detects the hierarchical structure in temporal sequences in the form of ordinal patterns and use them to index information hierarchically in different parts of the brain.
By doing so, it gives the tools to the language-ready brain for manipulating abstract knowledge and planning temporally ordered information.
arXiv Detail & Related papers (2020-05-22T14:29:51Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.