Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning
- URL: http://arxiv.org/abs/2202.02727v1
- Date: Sun, 6 Feb 2022 07:58:41 GMT
- Title: Energy-Aware Edge Association for Cluster-based Personalized Federated
Learning
- Authors: Y. Li, X. Qin, H. Chen, K. Han and P. Zhang
- Abstract summary: Federated Learning over wireless network enables data-conscious services by leveraging ubiquitous intelligence at network edge for privacy-preserving model training.
We propose clustered federated learning to group user devices with similar preference and provide each cluster with a personalized model.
We formulate an accuracy-cost trade-off optimization problem by jointly considering model accuracy, communication resource allocation and energy consumption.
- Score: 2.3262774900834606
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated Learning (FL) over wireless network enables data-conscious services
by leveraging the ubiquitous intelligence at network edge for
privacy-preserving model training. As the proliferation of context-aware
services, the diversified personal preferences causes disagreeing conditional
distributions among user data, which leads to poor inference performance. In
this sense, clustered federated learning is proposed to group user devices with
similar preference and provide each cluster with a personalized model. This
calls for innovative design in edge association that involves user clustering
and also resource management optimization. We formulate an accuracy-cost
trade-off optimization problem by jointly considering model accuracy,
communication resource allocation and energy consumption. To comply with
parameter encryption techniques in FL, we propose an iterative solution
procedure which employs deep reinforcement learning based approach at cloud
server for edge association. The reward function consists of minimized energy
consumption at each base station and the averaged model accuracy of all users.
Under our proposed solution, multiple edge base station are fully exploited to
realize cost efficient personalized federated learning without any prior
knowledge on model parameters. Simulation results show that our proposed
strategy outperforms existing strategies in achieving accurate learning at low
energy cost.
Related papers
- Efficient and Robust Regularized Federated Recommendation [52.24782464815489]
The recommender system (RSRS) addresses both user preference and privacy concerns.
We propose a novel method that incorporates non-uniform gradient descent to improve communication efficiency.
RFRecF's superior robustness compared to diverse baselines.
arXiv Detail & Related papers (2024-11-03T12:10:20Z) - Online Client Scheduling and Resource Allocation for Efficient Federated Edge Learning [9.451084740123198]
Federated learning (FL) enables edge devices to collaboratively train a machine learning model without sharing their raw data.
However, deploying FL over mobile edge networks with constrained resources such as power, bandwidth, and suffers from high training latency and low model accuracy.
This paper investigates the optimal client scheduling and resource allocation for FL over mobile edge networks under resource constraints and uncertainty.
arXiv Detail & Related papers (2024-09-29T01:56:45Z) - SCALE: Self-regulated Clustered federAted LEarning in a Homogeneous Environment [4.925906256430176]
Federated Learning (FL) has emerged as a transformative approach for enabling distributed machine learning while preserving user privacy.
This paper presents a novel FL methodology that overcomes these limitations by eliminating the dependency on edge servers.
arXiv Detail & Related papers (2024-07-25T20:42:16Z) - Communication Efficient ConFederated Learning: An Event-Triggered SAGA
Approach [67.27031215756121]
Federated learning (FL) is a machine learning paradigm that targets model training without gathering the local data over various data sources.
Standard FL, which employs a single server, can only support a limited number of users, leading to degraded learning capability.
In this work, we consider a multi-server FL framework, referred to as emphConfederated Learning (CFL) in order to accommodate a larger number of users.
arXiv Detail & Related papers (2024-02-28T03:27:10Z) - Personalizing Federated Learning with Over-the-Air Computations [84.8089761800994]
Federated edge learning is a promising technology to deploy intelligence at the edge of wireless networks in a privacy-preserving manner.
Under such a setting, multiple clients collaboratively train a global generic model under the coordination of an edge server.
This paper presents a distributed training paradigm that employs analog over-the-air computation to address the communication bottleneck.
arXiv Detail & Related papers (2023-02-24T08:41:19Z) - ON-DEMAND-FL: A Dynamic and Efficient Multi-Criteria Federated Learning
Client Deployment Scheme [37.099990745974196]
We introduce an On-Demand-FL, a client deployment approach for federated learning.
We make use of containerization technology such as Docker to build efficient environments.
The Genetic algorithm (GA) is used to solve the multi-objective optimization problem.
arXiv Detail & Related papers (2022-11-05T13:41:19Z) - DisPFL: Towards Communication-Efficient Personalized Federated Learning
via Decentralized Sparse Training [84.81043932706375]
We propose a novel personalized federated learning framework in a decentralized (peer-to-peer) communication protocol named Dis-PFL.
Dis-PFL employs personalized sparse masks to customize sparse local models on the edge.
We demonstrate that our method can easily adapt to heterogeneous local clients with varying computation complexities.
arXiv Detail & Related papers (2022-06-01T02:20:57Z) - An Expectation-Maximization Perspective on Federated Learning [75.67515842938299]
Federated learning describes the distributed training of models across multiple clients while keeping the data private on-device.
In this work, we view the server-orchestrated federated learning process as a hierarchical latent variable model where the server provides the parameters of a prior distribution over the client-specific model parameters.
We show that with simple Gaussian priors and a hard version of the well known Expectation-Maximization (EM) algorithm, learning in such a model corresponds to FedAvg, the most popular algorithm for the federated learning setting.
arXiv Detail & Related papers (2021-11-19T12:58:59Z) - Cost-Effective Federated Learning in Mobile Edge Networks [37.16466118235272]
Federated learning (FL) is a distributed learning paradigm that enables a large number of mobile devices to collaboratively learn a model without sharing their raw data.
We analyze how to design adaptive FL in mobile edge networks that optimally chooses essential control variables to minimize the total cost.
We develop a low-cost sampling-based algorithm to learn the convergence related unknown parameters.
arXiv Detail & Related papers (2021-09-12T03:02:24Z) - Communication-Efficient Hierarchical Federated Learning for IoT
Heterogeneous Systems with Imbalanced Data [42.26599494940002]
Federated learning (FL) is a distributed learning methodology that allows multiple nodes to cooperatively train a deep learning model.
This paper studies the potential of hierarchical FL in IoT heterogeneous systems.
It proposes an optimized solution for user assignment and resource allocation on multiple edge nodes.
arXiv Detail & Related papers (2021-07-14T08:32:39Z) - Blockchain Assisted Decentralized Federated Learning (BLADE-FL):
Performance Analysis and Resource Allocation [119.19061102064497]
We propose a decentralized FL framework by integrating blockchain into FL, namely, blockchain assisted decentralized federated learning (BLADE-FL)
In a round of the proposed BLADE-FL, each client broadcasts its trained model to other clients, competes to generate a block based on the received models, and then aggregates the models from the generated block before its local training of the next round.
We explore the impact of lazy clients on the learning performance of BLADE-FL, and characterize the relationship among the optimal K, the learning parameters, and the proportion of lazy clients.
arXiv Detail & Related papers (2021-01-18T07:19:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.