Data set creation and empirical analysis for detecting signs of
depression from social media postings
- URL: http://arxiv.org/abs/2202.03047v1
- Date: Mon, 7 Feb 2022 10:24:33 GMT
- Title: Data set creation and empirical analysis for detecting signs of
depression from social media postings
- Authors: Kayalvizhi S and Thenmozhi D
- Abstract summary: Depression is a common mental illness that has to be detected and treated at an early stage to avoid serious consequences.
We developed a gold standard data set that detects the levels of depression as not depressed', moderately depressed' and severely depressed' from the social media postings.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Depression is a common mental illness that has to be detected and treated at
an early stage to avoid serious consequences. There are many methods and
modalities for detecting depression that involves physical examination of the
individual. However, diagnosing mental health using their social media data is
more effective as it avoids such physical examinations. Also, people express
their emotions well in social media, it is desirable to diagnose their mental
health using social media data. Though there are many existing systems that
detects mental illness of a person by analysing their social media data,
detecting the level of depression is also important for further treatment.
Thus, in this research, we developed a gold standard data set that detects the
levels of depression as `not depressed', `moderately depressed' and `severely
depressed' from the social media postings. Traditional learning algorithms were
employed on this data set and an empirical analysis was presented in this
paper. Data augmentation technique was applied to overcome the data imbalance.
Among the several variations that are implemented, the model with Word2Vec
vectorizer and Random Forest classifier on augmented data outperforms the other
variations with a score of 0.877 for both accuracy and F1 measure.
Related papers
- MentalArena: Self-play Training of Language Models for Diagnosis and Treatment of Mental Health Disorders [59.515827458631975]
Mental health disorders are one of the most serious diseases in the world.
Privacy concerns limit the accessibility of personalized treatment data.
MentalArena is a self-play framework to train language models.
arXiv Detail & Related papers (2024-10-09T13:06:40Z) - Exploring Social Media Posts for Depression Identification: A Study on Reddit Dataset [0.0]
Depression is one of the most common mental disorders affecting an individual's personal and professional life.
In this work, we investigated the possibility of utilizing social media posts to identify depression in individuals.
arXiv Detail & Related papers (2024-04-16T06:25:51Z) - Measuring Non-Typical Emotions for Mental Health: A Survey of Computational Approaches [57.486040830365646]
Stress and depression impact the engagement in daily tasks, highlighting the need to understand their interplay.
This survey is the first to simultaneously explore computational methods for analyzing stress, depression, and engagement.
arXiv Detail & Related papers (2024-03-09T11:16:09Z) - What Symptoms and How Long? An Interpretable AI Approach for Depression
Detection in Social Media [0.5156484100374058]
Depression is the most prevalent and serious mental illness, which induces grave financial and societal ramifications.
This study contributes to IS literature with a novel interpretable deep learning model for depression detection in social media.
arXiv Detail & Related papers (2023-05-18T20:15:04Z) - Depression detection in social media posts using affective and social
norm features [84.12658971655253]
We propose a deep architecture for depression detection from social media posts.
We incorporate profanity and morality features of posts and words in our architecture using a late fusion scheme.
The inclusion of the proposed features yields state-of-the-art results in both settings.
arXiv Detail & Related papers (2023-03-24T21:26:27Z) - Depression Detection Using Digital Traces on Social Media: A
Knowledge-aware Deep Learning Approach [17.07576768682415]
Depression is a common disease worldwide. It is difficult to diagnose and continues to be underdiagnosed.
Because depressed patients constantly share their symptoms, major life events, and treatments on social media, researchers are turning to user-generated digital traces on social media for depression detection.
We propose a Deep Knowledge-aware Depression Detection (DKDD) framework to accurately detect social media users at risk of depression and explain the critical factors that contribute to such detection.
arXiv Detail & Related papers (2023-03-06T20:08:07Z) - Handwriting and Drawing for Depression Detection: A Preliminary Study [53.11777541341063]
Short-term covid effects on mental health were a significant increase in anxiety and depressive symptoms.
The aim of this study is to use a new tool, the online handwriting and drawing analysis, to discriminate between healthy individuals and depressed patients.
arXiv Detail & Related papers (2023-02-05T22:33:49Z) - Semantic Similarity Models for Depression Severity Estimation [53.72188878602294]
This paper presents an efficient semantic pipeline to study depression severity in individuals based on their social media writings.
We use test user sentences for producing semantic rankings over an index of representative training sentences corresponding to depressive symptoms and severity levels.
We evaluate our methods on two Reddit-based benchmarks, achieving 30% improvement over state of the art in terms of measuring depression severity.
arXiv Detail & Related papers (2022-11-14T18:47:26Z) - DEPTWEET: A Typology for Social Media Texts to Detect Depression
Severities [0.46796109436086664]
We leverage the clinical articulation of depression to build a typology for social media texts for detecting the severity of depression.
It emulates the standard clinical assessment procedure Diagnostic and Statistical Manual of Mental Disorders (DSM-5) and Patient Health Questionnaire (PHQ-9)
We present a new dataset of 40191 tweets labeled by expert annotators. Each tweet is labeled as 'non-depressed' or 'depressed'
arXiv Detail & Related papers (2022-10-10T08:23:57Z) - A Psychologically Informed Part-of-Speech Analysis of Depression in
Social Media [1.7188280334580193]
We use the depression dataset from the Early Risk Prediction on the Internet Workshop (eRisk) 2018.
Our results reveal statistically significant differences between the depressed and non-depressed individuals.
Our work provides insights regarding the way in which depressed individuals are expressing themselves on social media platforms.
arXiv Detail & Related papers (2021-07-31T16:23:22Z) - Deep Multi-task Learning for Depression Detection and Prediction in
Longitudinal Data [50.02223091927777]
Depression is among the most prevalent mental disorders, affecting millions of people of all ages globally.
Machine learning techniques have shown effective in enabling automated detection and prediction of depression for early intervention and treatment.
We introduce a novel deep multi-task recurrent neural network to tackle this challenge, in which depression classification is jointly optimized with two auxiliary tasks.
arXiv Detail & Related papers (2020-12-05T05:14:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.