Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery
- URL: http://arxiv.org/abs/2202.03391v1
- Date: Mon, 7 Feb 2022 18:27:08 GMT
- Title: Gradient-Based Learning of Discrete Structured Measurement Operators for
Signal Recovery
- Authors: Jonathan Sauder and Martin Genzel and Peter Jung
- Abstract summary: We show how to leverage gradient-based learning to solve discrete optimization problems.
Our approach is formalized by GLODISMO (Gradient-based Learning of DIscrete Structured Measurement Operators)
We empirically demonstrate the performance and flexibility of GLODISMO in several signal recovery applications.
- Score: 16.740247586153085
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Countless signal processing applications include the reconstruction of
signals from few indirect linear measurements. The design of effective
measurement operators is typically constrained by the underlying hardware and
physics, posing a challenging and often even discrete optimization task. While
the potential of gradient-based learning via the unrolling of iterative
recovery algorithms has been demonstrated, it has remained unclear how to
leverage this technique when the set of admissible measurement operators is
structured and discrete. We tackle this problem by combining unrolled
optimization with Gumbel reparametrizations, which enable the computation of
low-variance gradient estimates of categorical random variables. Our approach
is formalized by GLODISMO (Gradient-based Learning of DIscrete Structured
Measurement Operators). This novel method is easy-to-implement, computationally
efficient, and extendable due to its compatibility with automatic
differentiation. We empirically demonstrate the performance and flexibility of
GLODISMO in several prototypical signal recovery applications, verifying that
the learned measurement matrices outperform conventional designs based on
randomization as well as discrete optimization baselines.
Related papers
- Learning signals defined on graphs with optimal transport and Gaussian process regression [1.1062090350704616]
In computational physics, machine learning has emerged as a powerful complementary tool to explore efficiently candidate designs in engineering studies.
We propose an innovative strategy for Gaussian process regression where inputs are large and sparse graphs with continuous node attributes and outputs are signals defined on the nodes of the associated inputs.
In addition to enabling signal prediction, the main point of our proposal is to come with confidence intervals on node values, which is crucial for uncertainty and active learning.
arXiv Detail & Related papers (2024-10-21T07:39:44Z) - Precise asymptotics of reweighted least-squares algorithms for linear diagonal networks [15.074950361970194]
We provide a unified analysis for a family of algorithms that encompasses IRLS, the recently proposed linlin-RFM algorithm, and the alternating diagonal neural networks.
We show that, with appropriately chosen reweighting policy, a handful of sparse structures can achieve favorable performance.
We also show that leveraging this in the reweighting scheme provably improves test error compared to coordinate-wise reweighting.
arXiv Detail & Related papers (2024-06-04T20:37:17Z) - Large-Scale OD Matrix Estimation with A Deep Learning Method [70.78575952309023]
The proposed method integrates deep learning and numerical optimization algorithms to infer matrix structure and guide numerical optimization.
We conducted tests to demonstrate the good generalization performance of our method on a large-scale synthetic dataset.
arXiv Detail & Related papers (2023-10-09T14:30:06Z) - Regularization, early-stopping and dreaming: a Hopfield-like setup to
address generalization and overfitting [0.0]
We look for optimal network parameters by applying a gradient descent over a regularized loss function.
Within this framework, the optimal neuron-interaction matrices correspond to Hebbian kernels revised by a reiterated unlearning protocol.
arXiv Detail & Related papers (2023-08-01T15:04:30Z) - Bayesian Spline Learning for Equation Discovery of Nonlinear Dynamics
with Quantified Uncertainty [8.815974147041048]
We develop a novel framework to identify parsimonious governing equations of nonlinear (spatiotemporal) dynamics from sparse, noisy data with quantified uncertainty.
The proposed algorithm is evaluated on multiple nonlinear dynamical systems governed by canonical ordinary and partial differential equations.
arXiv Detail & Related papers (2022-10-14T20:37:36Z) - An Accelerated Doubly Stochastic Gradient Method with Faster Explicit
Model Identification [97.28167655721766]
We propose a novel doubly accelerated gradient descent (ADSGD) method for sparsity regularized loss minimization problems.
We first prove that ADSGD can achieve a linear convergence rate and lower overall computational complexity.
arXiv Detail & Related papers (2022-08-11T22:27:22Z) - Stabilizing Q-learning with Linear Architectures for Provably Efficient
Learning [53.17258888552998]
This work proposes an exploration variant of the basic $Q$-learning protocol with linear function approximation.
We show that the performance of the algorithm degrades very gracefully under a novel and more permissive notion of approximation error.
arXiv Detail & Related papers (2022-06-01T23:26:51Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Investigating the Scalability and Biological Plausibility of the
Activation Relaxation Algorithm [62.997667081978825]
Activation Relaxation (AR) algorithm provides a simple and robust approach for approximating the backpropagation of error algorithm.
We show that the algorithm can be further simplified and made more biologically plausible by introducing a learnable set of backwards weights.
We also investigate whether another biologically implausible assumption of the original AR algorithm -- the frozen feedforward pass -- can be relaxed without damaging performance.
arXiv Detail & Related papers (2020-10-13T08:02:38Z) - Activation Relaxation: A Local Dynamical Approximation to
Backpropagation in the Brain [62.997667081978825]
Activation Relaxation (AR) is motivated by constructing the backpropagation gradient as the equilibrium point of a dynamical system.
Our algorithm converges rapidly and robustly to the correct backpropagation gradients, requires only a single type of computational unit, and can operate on arbitrary computation graphs.
arXiv Detail & Related papers (2020-09-11T11:56:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.