Boosting Graph Neural Networks by Injecting Pooling in Message Passing
- URL: http://arxiv.org/abs/2202.04768v1
- Date: Tue, 8 Feb 2022 08:21:20 GMT
- Title: Boosting Graph Neural Networks by Injecting Pooling in Message Passing
- Authors: Hyeokjin Kwon, Jong-Min Lee
- Abstract summary: We propose a new, adaptable, and powerful MP framework to prevent over-smoothing.
Our bilateral-MP estimates a pairwise modular gradient by utilizing the class information of nodes.
Experiments on five medium-size benchmark datasets indicate that the bilateral-MP improves performance by alleviating over-smoothing.
- Score: 4.952681349410351
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been tremendous success in the field of graph neural networks
(GNNs) as a result of the development of the message-passing (MP) layer, which
updates the representation of a node by combining it with its neighbors to
address variable-size and unordered graphs. Despite the fruitful progress of MP
GNNs, their performance can suffer from over-smoothing, when node
representations become too similar and even indistinguishable from one another.
Furthermore, it has been reported that intrinsic graph structures are smoothed
out as the GNN layer increases. Inspired by the edge-preserving bilateral
filters used in image processing, we propose a new, adaptable, and powerful MP
framework to prevent over-smoothing. Our bilateral-MP estimates a pairwise
modular gradient by utilizing the class information of nodes, and further
preserves the global graph structure by using the gradient when the aggregating
function is applied. Our proposed scheme can be generalized to all ordinary MP
GNNs. Experiments on five medium-size benchmark datasets using four
state-of-the-art MP GNNs indicate that the bilateral-MP improves performance by
alleviating over-smoothing. By inspecting quantitative measurements, we
additionally validate the effectiveness of the proposed mechanism in preventing
the over-smoothing issue.
Related papers
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
Graph Neural Network (GNN) with the main idea of encoding graph structure information of graphs by propagation and aggregation has developed rapidly.
It achieved excellent performance in representation learning of multiple types of graphs such as homogeneous graphs, heterogeneous graphs, and more complex graphs like knowledge graphs.
For the phenomenon of performance degradation in deep GNNs, we propose a new perspective.
arXiv Detail & Related papers (2024-07-03T02:40:39Z) - Self-Attention Empowered Graph Convolutional Network for Structure
Learning and Node Embedding [5.164875580197953]
In representation learning on graph-structured data, many popular graph neural networks (GNNs) fail to capture long-range dependencies.
This paper proposes a novel graph learning framework called the graph convolutional network with self-attention (GCN-SA)
The proposed scheme exhibits an exceptional generalization capability in node-level representation learning.
arXiv Detail & Related papers (2024-03-06T05:00:31Z) - GGNNs : Generalizing GNNs using Residual Connections and Weighted
Message Passing [0.0]
GNNs excel at capturing relationships and patterns within graphs, enabling effective learning and prediction tasks.
It is commonly believed that the generalizing power of GNNs is attributed to the message-passing mechanism between layers.
Our technique builds on these results, modifying the message-passing mechanism further: one by weighing the messages before accumulating at each node and another by adding Residual connections.
arXiv Detail & Related papers (2023-11-26T22:22:38Z) - Complete the Missing Half: Augmenting Aggregation Filtering with
Diversification for Graph Convolutional Neural Networks [46.14626839260314]
We show that current Graph Neural Networks (GNNs) are potentially a problematic factor underlying all GNN models for learning on certain datasets.
We augment the aggregation operations with their dual, i.e. diversification operators that make the node more distinct and preserve the identity.
Such augmentation replaces the aggregation with a two-channel filtering process that, in theory, is beneficial for enriching the node representations.
In the experiments, we observe desired characteristics of the models and significant performance boost upon the baselines on 9 node classification tasks.
arXiv Detail & Related papers (2022-12-21T07:24:03Z) - Gradient Gating for Deep Multi-Rate Learning on Graphs [62.25886489571097]
We present Gradient Gating (G$2$), a novel framework for improving the performance of Graph Neural Networks (GNNs)
Our framework is based on gating the output of GNN layers with a mechanism for multi-rate flow of message passing information across nodes of the underlying graph.
arXiv Detail & Related papers (2022-10-02T13:19:48Z) - VQ-GNN: A Universal Framework to Scale up Graph Neural Networks using
Vector Quantization [70.8567058758375]
VQ-GNN is a universal framework to scale up any convolution-based GNNs using Vector Quantization (VQ) without compromising the performance.
Our framework avoids the "neighbor explosion" problem of GNNs using quantized representations combined with a low-rank version of the graph convolution matrix.
arXiv Detail & Related papers (2021-10-27T11:48:50Z) - Hierarchical graph neural nets can capture long-range interactions [8.067880298298185]
We study hierarchical message passing models that leverage a multi-resolution representation of a given graph.
This facilitates learning of features that span large receptive fields without loss of local information.
We introduce Hierarchical Graph Net (HGNet), which for any two connected nodes guarantees existence of message-passing paths of at most logarithmic length.
arXiv Detail & Related papers (2021-07-15T16:24:22Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Permutation-equivariant and Proximity-aware Graph Neural Networks with
Stochastic Message Passing [88.30867628592112]
Graph neural networks (GNNs) are emerging machine learning models on graphs.
Permutation-equivariance and proximity-awareness are two important properties highly desirable for GNNs.
We show that existing GNNs, mostly based on the message-passing mechanism, cannot simultaneously preserve the two properties.
In order to preserve node proximities, we augment the existing GNNs with node representations.
arXiv Detail & Related papers (2020-09-05T16:46:56Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - Bilinear Graph Neural Network with Neighbor Interactions [106.80781016591577]
Graph Neural Network (GNN) is a powerful model to learn representations and make predictions on graph data.
We propose a new graph convolution operator, which augments the weighted sum with pairwise interactions of the representations of neighbor nodes.
We term this framework as Bilinear Graph Neural Network (BGNN), which improves GNN representation ability with bilinear interactions between neighbor nodes.
arXiv Detail & Related papers (2020-02-10T06:43:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.