L0Learn: A Scalable Package for Sparse Learning using L0 Regularization
- URL: http://arxiv.org/abs/2202.04820v2
- Date: Fri, 9 Jun 2023 16:20:37 GMT
- Title: L0Learn: A Scalable Package for Sparse Learning using L0 Regularization
- Authors: Hussein Hazimeh, Rahul Mazumder, Tim Nonet
- Abstract summary: L0Learn is an open-source package for sparse linear regression classification.
It implements scalable, approximate algorithms, based on coordinate descent and local optimization.
- Score: 6.037383467521294
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present L0Learn: an open-source package for sparse linear regression and
classification using $\ell_0$ regularization. L0Learn implements scalable,
approximate algorithms, based on coordinate descent and local combinatorial
optimization. The package is built using C++ and has user-friendly R and Python
interfaces. L0Learn can address problems with millions of features, achieving
competitive run times and statistical performance with state-of-the-art sparse
learning packages. L0Learn is available on both CRAN and GitHub
(https://cran.r-project.org/package=L0Learn and
https://github.com/hazimehh/L0Learn).
Related papers
- ml_edm package: a Python toolkit for Machine Learning based Early Decision Making [0.43363943304569713]
textttml_edm is a Python 3 library designed for early decision making of any learning tasks involving temporal/sequential data.
textttscikit-learn makes estimators and pipelines compatible with textttml_edm.
arXiv Detail & Related papers (2024-08-23T09:08:17Z) - End-to-end Learnable Clustering for Intent Learning in Recommendation [54.157784572994316]
We propose a novel intent learning method termed underlineELCRec.
It unifies behavior representation learning into an underlineEnd-to-end underlineLearnable underlineClustering framework.
We deploy this method on the industrial recommendation system with 130 million page views and achieve promising results.
arXiv Detail & Related papers (2024-01-11T15:22:55Z) - BackboneLearn: A Library for Scaling Mixed-Integer Optimization-Based
Machine Learning [0.0]
BackboneLearn is a framework for scaling mixed-integer optimization problems with indicator variables to high-dimensional problems.
BackboneLearn is built in Python and is user-friendly and easily implementable.
The source code of BackboneLearn is available on GitHub.
arXiv Detail & Related papers (2023-11-22T21:07:45Z) - LCE: An Augmented Combination of Bagging and Boosting in Python [45.65284933207566]
lcensemble is a high-performing, scalable and user-friendly Python package for the general tasks of classification and regression.
Local Cascade Ensemble (LCE) is a machine learning method that further enhances the prediction performance of the current state-of-the-art methods Random Forest and XGBoost.
arXiv Detail & Related papers (2023-08-14T16:34:47Z) - Efficiently Learning One-Hidden-Layer ReLU Networks via Schur
Polynomials [50.90125395570797]
We study the problem of PAC learning a linear combination of $k$ ReLU activations under the standard Gaussian distribution on $mathbbRd$ with respect to the square loss.
Our main result is an efficient algorithm for this learning task with sample and computational complexity $(dk/epsilon)O(k)$, whereepsilon>0$ is the target accuracy.
arXiv Detail & Related papers (2023-07-24T14:37:22Z) - DADApy: Distance-based Analysis of DAta-manifolds in Python [51.37841707191944]
DADApy is a python software package for analysing and characterising high-dimensional data.
It provides methods for estimating the intrinsic dimension and the probability density, for performing density-based clustering and for comparing different distance metrics.
arXiv Detail & Related papers (2022-05-04T08:41:59Z) - IMBENS: Ensemble Class-imbalanced Learning in Python [26.007498723608155]
imbens is an open-source Python toolbox for implementing and deploying ensemble learning algorithms on class-imbalanced data.
imbens is released under the MIT open-source license and can be installed from Python Package Index (PyPI)
arXiv Detail & Related papers (2021-11-24T20:14:20Z) - Solo-learn: A Library of Self-supervised Methods for Visual
Representation Learning [83.02597612195966]
solo-learn is a library of self-supervised methods for visual representation learning.
Implemented in Python, using Pytorch and Pytorch lightning, the library fits both research and industry needs.
arXiv Detail & Related papers (2021-08-03T22:19:55Z) - Picasso: A Sparse Learning Library for High Dimensional Data Analysis in
R and Python [77.33905890197269]
We describe a new library which implements a unified pathwise coordinate optimization for a variety of sparse learning problems.
The library is coded in R++ and has user-friendly sparse experiments.
arXiv Detail & Related papers (2020-06-27T02:39:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.