Equivariance Regularization for Image Reconstruction
- URL: http://arxiv.org/abs/2202.05062v2
- Date: Sat, 12 Feb 2022 15:30:04 GMT
- Title: Equivariance Regularization for Image Reconstruction
- Authors: Junqi Tang
- Abstract summary: We propose a structure-adaptive regularization scheme for solving imaging inverse problems under incomplete measurements.
This regularization scheme utilizes the equivariant structure in the physics of the measurements to mitigate the ill-poseness of the inverse problem.
Our proposed scheme can be applied in a plug-and-play manner alongside with any classic first-order optimization algorithm.
- Score: 5.025654873456756
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this work, we propose Regularization-by-Equivariance (REV), a novel
structure-adaptive regularization scheme for solving imaging inverse problems
under incomplete measurements. This regularization scheme utilizes the
equivariant structure in the physics of the measurements -- which is prevalent
in many inverse problems such as tomographic image reconstruction -- to
mitigate the ill-poseness of the inverse problem. Our proposed scheme can be
applied in a plug-and-play manner alongside with any classic first-order
optimization algorithm such as the accelerated gradient descent/FISTA for
simplicity and fast convergence. The numerical experiments in sparse-view X-ray
CT image reconstruction tasks demonstrate the effectiveness of our approach.
Related papers
- A Primal-dual algorithm for image reconstruction with ICNNs [3.4797100095791706]
We address the optimization problem in a data-driven variational framework, where the regularizer is parameterized by an input- neural network (ICNN)
While gradient-based methods are commonly used to solve such problems, they struggle to effectively handle nonsmoothness.
We show that a proposed approach outperforms subgradient methods in terms of both speed and stability.
arXiv Detail & Related papers (2024-10-16T10:36:29Z) - Diff-INR: Generative Regularization for Electrical Impedance Tomography [6.7667436349597985]
Electrical Impedance Tomography (EIT) reconstructs conductivity distributions within a body from boundary measurements.
EIT reconstruction is hindered by its ill-posed nonlinear inverse problem, which complicates accurate results.
We propose Diff-INR, a novel method that combines generative regularization with Implicit Neural Representations (INR) through a diffusion model.
arXiv Detail & Related papers (2024-09-06T14:21:23Z) - Space-Variant Total Variation boosted by learning techniques in few-view tomographic imaging [0.0]
This paper focuses on the development of a space-variant regularization model for solving an under-determined linear inverse problem.
The primary objective of the proposed model is to achieve a good balance between denoising and the preservation of fine details and edges.
A convolutional neural network is designed, to approximate both the ground truth image and its gradient using an elastic loss function in its training.
arXiv Detail & Related papers (2024-04-25T08:58:41Z) - An Optimization-based Deep Equilibrium Model for Hyperspectral Image
Deconvolution with Convergence Guarantees [71.57324258813675]
We propose a novel methodology for addressing the hyperspectral image deconvolution problem.
A new optimization problem is formulated, leveraging a learnable regularizer in the form of a neural network.
The derived iterative solver is then expressed as a fixed-point calculation problem within the Deep Equilibrium framework.
arXiv Detail & Related papers (2023-06-10T08:25:16Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) is an efficient, unsupervised posterior sampling method.
We demonstrate DDRM's versatility on several image datasets for super-resolution, deblurring, inpainting, and colorization.
arXiv Detail & Related papers (2022-01-27T20:19:07Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Learned Block Iterative Shrinkage Thresholding Algorithm for
Photothermal Super Resolution Imaging [52.42007686600479]
We propose a learned block-sparse optimization approach using an iterative algorithm unfolded into a deep neural network.
We show the benefits of using a learned block iterative shrinkage thresholding algorithm that is able to learn the choice of regularization parameters.
arXiv Detail & Related papers (2020-12-07T09:27:16Z) - Using Deep Image Priors to Generate Counterfactual Explanations [38.62513524757573]
A deep image prior (DIP) can be used to obtain pre-images from latent representation encodings.
We propose a novel regularization strategy based on an auxiliary loss estimator jointly trained with the predictor.
arXiv Detail & Related papers (2020-10-22T20:40:44Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z) - Learned convex regularizers for inverse problems [3.294199808987679]
We propose to learn a data-adaptive input- neural network (ICNN) as a regularizer for inverse problems.
We prove the existence of a sub-gradient-based algorithm that leads to a monotonically decreasing error in the parameter space with iterations.
We show that the proposed convex regularizer is at least competitive with and sometimes superior to state-of-the-art data-driven techniques for inverse problems.
arXiv Detail & Related papers (2020-08-06T18:58:35Z) - Total Deep Variation for Linear Inverse Problems [71.90933869570914]
We propose a novel learnable general-purpose regularizer exploiting recent architectural design patterns from deep learning.
We show state-of-the-art performance for classical image restoration and medical image reconstruction problems.
arXiv Detail & Related papers (2020-01-14T19:01:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.