Towards Data-Algorithm Dependent Generalization: a Case Study on
Overparameterized Linear Regression
- URL: http://arxiv.org/abs/2202.06054v4
- Date: Tue, 21 Nov 2023 07:47:04 GMT
- Title: Towards Data-Algorithm Dependent Generalization: a Case Study on
Overparameterized Linear Regression
- Authors: Jing Xu, Jiaye Teng, Yang Yuan, Andrew Chi-Chih Yao
- Abstract summary: We introduce a notion called data-algorithm compatibility, which considers the generalization behavior of the entire data-dependent training trajectory.
We perform a data-dependent trajectory analysis and derive a sufficient condition for compatibility in such a setting.
- Score: 19.047997113063147
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the major open problems in machine learning is to characterize
generalization in the overparameterized regime, where most traditional
generalization bounds become inconsistent even for overparameterized linear
regression. In many scenarios, this failure can be attributed to obscuring the
crucial interplay between the training algorithm and the underlying data
distribution. This paper demonstrate that the generalization behavior of
overparameterized model should be analyzed in a both data-relevant and
algorithm-relevant manner. To make a formal characterization, We introduce a
notion called data-algorithm compatibility, which considers the generalization
behavior of the entire data-dependent training trajectory, instead of
traditional last-iterate analysis. We validate our claim by studying the
setting of solving overparameterized linear regression with gradient descent.
Specifically, we perform a data-dependent trajectory analysis and derive a
sufficient condition for compatibility in such a setting. Our theoretical
results demonstrate that if we take early stopping iterates into consideration,
generalization can hold with significantly weaker restrictions on the problem
instance than the previous last-iterate analysis.
Related papers
- On the Geometry of Regularization in Adversarial Training: High-Dimensional Asymptotics and Generalization Bounds [11.30047438005394]
This work investigates the question of how to choose the regularization norm $lVert cdot rVert$ in the context of high-dimensional adversarial training for binary classification.
We quantitatively characterize the relationship between perturbation size and the optimal choice of $lVert cdot rVert$, confirming the intuition that, in the data scarce regime, the type of regularization becomes increasingly important for adversarial training as perturbations grow in size.
arXiv Detail & Related papers (2024-10-21T14:53:12Z) - A Statistical Theory of Regularization-Based Continual Learning [10.899175512941053]
We provide a statistical analysis of regularization-based continual learning on a sequence of linear regression tasks.
We first derive the convergence rate for the oracle estimator obtained as if all data were available simultaneously.
A byproduct of our theoretical analysis is the equivalence between early stopping and generalized $ell$-regularization.
arXiv Detail & Related papers (2024-06-10T12:25:13Z) - Understanding Generalization of Federated Learning via Stability:
Heterogeneity Matters [1.4502611532302039]
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
Generalization performance is a key metric in evaluating machine learning models when applied to real-world applications.
arXiv Detail & Related papers (2023-06-06T16:12:35Z) - Theoretical Characterization of the Generalization Performance of
Overfitted Meta-Learning [70.52689048213398]
This paper studies the performance of overfitted meta-learning under a linear regression model with Gaussian features.
We find new and interesting properties that do not exist in single-task linear regression.
Our analysis suggests that benign overfitting is more significant and easier to observe when the noise and the diversity/fluctuation of the ground truth of each training task are large.
arXiv Detail & Related papers (2023-04-09T20:36:13Z) - Instance-Dependent Generalization Bounds via Optimal Transport [51.71650746285469]
Existing generalization bounds fail to explain crucial factors that drive the generalization of modern neural networks.
We derive instance-dependent generalization bounds that depend on the local Lipschitz regularity of the learned prediction function in the data space.
We empirically analyze our generalization bounds for neural networks, showing that the bound values are meaningful and capture the effect of popular regularization methods during training.
arXiv Detail & Related papers (2022-11-02T16:39:42Z) - On the generalization of learning algorithms that do not converge [54.122745736433856]
Generalization analyses of deep learning typically assume that the training converges to a fixed point.
Recent results indicate that in practice, the weights of deep neural networks optimized with gradient descent often oscillate indefinitely.
arXiv Detail & Related papers (2022-08-16T21:22:34Z) - Towards Understanding Generalization via Decomposing Excess Risk
Dynamics [13.4379473119565]
We analyze the generalization dynamics to derive algorithm-dependent bounds, e.g., stability.
Inspired by the observation that neural networks show a slow convergence rate when fitting noise, we propose decomposing the excess risk dynamics.
Under the decomposition framework, the new bound accords better with the theoretical and empirical evidence compared to the stability-based bound and uniform convergence bound.
arXiv Detail & Related papers (2021-06-11T03:42:45Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
We prove that the generalization error of an optimization algorithm can be bounded on the complexity' of the fractal structure that underlies its generalization measure.
We further specialize our results to specific problems (e.g., linear/logistic regression, one hidden/layered neural networks) and algorithms.
arXiv Detail & Related papers (2021-06-09T08:05:36Z) - Benign Overfitting of Constant-Stepsize SGD for Linear Regression [122.70478935214128]
inductive biases are central in preventing overfitting empirically.
This work considers this issue in arguably the most basic setting: constant-stepsize SGD for linear regression.
We reflect on a number of notable differences between the algorithmic regularization afforded by (unregularized) SGD in comparison to ordinary least squares.
arXiv Detail & Related papers (2021-03-23T17:15:53Z) - Generalization Error of Generalized Linear Models in High Dimensions [25.635225717360466]
We provide a framework to characterize neural networks with arbitrary non-linearities.
We analyze the effect of regular logistic regression on learning.
Our model also captures examples between training and distributions special cases.
arXiv Detail & Related papers (2020-05-01T02:17:47Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.