Semi-supervised Medical Image Segmentation via Geometry-aware Consistency Training
- URL: http://arxiv.org/abs/2202.06104v2
- Date: Fri, 10 May 2024 06:04:38 GMT
- Title: Semi-supervised Medical Image Segmentation via Geometry-aware Consistency Training
- Authors: Zihang Liu, Chunhui Zhao,
- Abstract summary: In this paper, a novel geometry-aware semi-supervised learning framework is proposed for medical image segmentation.
Our framework outperforms six state-of-the-art semi-supervised segmentation methods.
- Score: 26.128597729527208
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The performance of supervised deep learning methods for medical image segmentation is often limited by the scarcity of labeled data. As a promising research direction, semi-supervised learning addresses this dilemma by leveraging unlabeled data information to assist the learning process. In this paper, a novel geometry-aware semi-supervised learning framework is proposed for medical image segmentation, which is a consistency-based method. Considering that the hard-to-segment regions are mainly located around the object boundary, we introduce an auxiliary prediction task to learn the global geometric information. Based on the geometric constraint, the ambiguous boundary regions are emphasized through an exponentially weighted strategy for the model training to better exploit both labeled and unlabeled data. In addition, a dual-view network is designed to perform segmentation from different perspectives and reduce the prediction uncertainty. The proposed method is evaluated on the public left atrium benchmark dataset and improves fully supervised method by 8.7% in Dice with 10% labeled images, while 4.3% with 20% labeled images. Meanwhile, our framework outperforms six state-of-the-art semi-supervised segmentation methods.
Related papers
- Semi-Supervised Semantic Segmentation Based on Pseudo-Labels: A Survey [49.47197748663787]
This review aims to provide a first comprehensive and organized overview of the state-of-the-art research results on pseudo-label methods in the field of semi-supervised semantic segmentation.
In addition, we explore the application of pseudo-label technology in medical and remote-sensing image segmentation.
arXiv Detail & Related papers (2024-03-04T10:18:38Z) - Self-Supervised Correction Learning for Semi-Supervised Biomedical Image
Segmentation [84.58210297703714]
We propose a self-supervised correction learning paradigm for semi-supervised biomedical image segmentation.
We design a dual-task network, including a shared encoder and two independent decoders for segmentation and lesion region inpainting.
Experiments on three medical image segmentation datasets for different tasks demonstrate the outstanding performance of our method.
arXiv Detail & Related papers (2023-01-12T08:19:46Z) - PCA: Semi-supervised Segmentation with Patch Confidence Adversarial
Training [52.895952593202054]
We propose a new semi-supervised adversarial method called Patch Confidence Adrial Training (PCA) for medical image segmentation.
PCA learns the pixel structure and context information in each patch to get enough gradient feedback, which aids the discriminator in convergent to an optimal state.
Our method outperforms the state-of-the-art semi-supervised methods, which demonstrates its effectiveness for medical image segmentation.
arXiv Detail & Related papers (2022-07-24T07:45:47Z) - Nuclei Segmentation with Point Annotations from Pathology Images via
Self-Supervised Learning and Co-Training [44.13451004973818]
We propose a weakly-supervised learning method for nuclei segmentation.
coarse pixel-level labels are derived from the point annotations based on the Voronoi diagram.
A self-supervised visual representation learning method is tailored for nuclei segmentation of pathology images.
arXiv Detail & Related papers (2022-02-16T17:08:44Z) - Boosting Semi-supervised Image Segmentation with Global and Local Mutual
Information Regularization [9.994508738317585]
We present a novel semi-supervised segmentation method that leverages mutual information (MI) on categorical distributions.
We evaluate the method on three challenging publicly-available datasets for medical image segmentation.
arXiv Detail & Related papers (2021-03-08T15:13:25Z) - Dual-Task Mutual Learning for Semi-Supervised Medical Image Segmentation [12.940103904327655]
We propose a novel dual-task mutual learning framework for semi-supervised medical image segmentation.
Our framework can be formulated as an integration of two individual segmentation networks based on two tasks.
By jointly learning the segmentation probability maps and signed distance maps of targets, our framework can enforce the geometric shape constraint and learn more reliable information.
arXiv Detail & Related papers (2021-03-08T12:38:23Z) - Three Ways to Improve Semantic Segmentation with Self-Supervised Depth
Estimation [90.87105131054419]
We present a framework for semi-supervised semantic segmentation, which is enhanced by self-supervised monocular depth estimation from unlabeled image sequences.
We validate the proposed model on the Cityscapes dataset, where all three modules demonstrate significant performance gains.
arXiv Detail & Related papers (2020-12-19T21:18:03Z) - Contrastive Rendering for Ultrasound Image Segmentation [59.23915581079123]
The lack of sharp boundaries in US images remains an inherent challenge for segmentation.
We propose a novel and effective framework to improve boundary estimation in US images.
Our proposed method outperforms state-of-the-art methods and has the potential to be used in clinical practice.
arXiv Detail & Related papers (2020-10-10T07:14:03Z) - Shape-aware Semi-supervised 3D Semantic Segmentation for Medical Images [24.216869988183092]
We propose a shapeaware semi-supervised segmentation strategy to leverage abundant unlabeled data and to enforce a geometric shape constraint on the segmentation output.
We develop a multi-task deep network that jointly predicts semantic segmentation and signed distance mapDM) of object surfaces.
Experiments show that our method outperforms current state-of-the-art approaches with improved shape estimation.
arXiv Detail & Related papers (2020-07-21T11:44:52Z) - Weakly Supervised Deep Nuclei Segmentation Using Partial Points
Annotation in Histopathology Images [51.893494939675314]
We propose a novel weakly supervised segmentation framework based on partial points annotation.
We show that our method can achieve competitive performance compared to the fully supervised counterpart and the state-of-the-art methods.
arXiv Detail & Related papers (2020-07-10T15:41:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.