Emotion Based Hate Speech Detection using Multimodal Learning
- URL: http://arxiv.org/abs/2202.06218v1
- Date: Sun, 13 Feb 2022 05:39:47 GMT
- Title: Emotion Based Hate Speech Detection using Multimodal Learning
- Authors: Aneri Rana and Sonali Jha
- Abstract summary: This paper proposes the first multimodal deep learning framework to combine the auditory features representing emotion and the semantic features to detect hateful content.
Our results demonstrate that incorporating emotional attributes leads to significant improvement over text-based models in detecting hateful multimedia content.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In recent years, monitoring hate speech and offensive language on social
media platforms has become paramount due to its widespread usage among all age
groups, races, and ethnicities. Consequently, there have been substantial
research efforts towards automated detection of such content using Natural
Language Processing (NLP). While successfully filtering textual data, no
research has focused on detecting hateful content in multimedia data. With
increased ease of data storage and the exponential growth of social media
platforms, multimedia content proliferates the internet as much as text data.
Nevertheless, it escapes the automatic filtering systems. Hate speech and
offensiveness can be detected in multimedia primarily via three modalities,
i.e., visual, acoustic, and verbal. Our preliminary study concluded that the
most essential features in classifying hate speech would be the speaker's
emotional state and its influence on the spoken words, therefore limiting our
current research to these modalities. This paper proposes the first multimodal
deep learning framework to combine the auditory features representing emotion
and the semantic features to detect hateful content. Our results demonstrate
that incorporating emotional attributes leads to significant improvement over
text-based models in detecting hateful multimedia content. This paper also
presents a new Hate Speech Detection Video Dataset (HSDVD) collected for the
purpose of multimodal learning as no such dataset exists today.
Related papers
- Multi-modal Hate Speech Detection using Machine Learning [0.6793286055326242]
A combined approach of multimodal system has been proposed to detect hate speech from video contents by extracting feature images, feature values extracted from the audio, text and used machine learning and Natural language processing.
arXiv Detail & Related papers (2023-06-15T06:46:52Z) - A Video Is Worth 4096 Tokens: Verbalize Videos To Understand Them In
Zero Shot [67.00455874279383]
We propose verbalizing long videos to generate descriptions in natural language, then performing video-understanding tasks on the generated story as opposed to the original video.
Our method, despite being zero-shot, achieves significantly better results than supervised baselines for video understanding.
To alleviate a lack of story understanding benchmarks, we publicly release the first dataset on a crucial task in computational social science on persuasion strategy identification.
arXiv Detail & Related papers (2023-05-16T19:13:11Z) - Countering Malicious Content Moderation Evasion in Online Social
Networks: Simulation and Detection of Word Camouflage [64.78260098263489]
Twisting and camouflaging keywords are among the most used techniques to evade platform content moderation systems.
This article contributes significantly to countering malicious information by developing multilingual tools to simulate and detect new methods of evasion of content.
arXiv Detail & Related papers (2022-12-27T16:08:49Z) - Assessing the impact of contextual information in hate speech detection [0.48369513656026514]
We provide a novel corpus for contextualized hate speech detection based on user responses to news posts from media outlets on Twitter.
This corpus was collected in the Rioplatense dialectal variety of Spanish and focuses on hate speech associated with the COVID-19 pandemic.
arXiv Detail & Related papers (2022-10-02T09:04:47Z) - Self-Supervised Speech Representation Learning: A Review [105.1545308184483]
Self-supervised representation learning methods promise a single universal model that would benefit a wide variety of tasks and domains.
Speech representation learning is experiencing similar progress in three main categories: generative, contrastive, and predictive methods.
This review presents approaches for self-supervised speech representation learning and their connection to other research areas.
arXiv Detail & Related papers (2022-05-21T16:52:57Z) - Anti-Asian Hate Speech Detection via Data Augmented Semantic Relation
Inference [4.885207279350052]
We propose a novel approach to leverage sentiment hashtags to enhance hate speech detection in a natural language inference framework.
We design a novel framework SRIC that simultaneously performs two tasks: (1) semantic relation inference between online posts and sentiment hashtags, and (2) sentiment classification on these posts.
arXiv Detail & Related papers (2022-04-14T15:03:35Z) - Deep Learning for Hate Speech Detection: A Comparative Study [54.42226495344908]
We present here a large-scale empirical comparison of deep and shallow hate-speech detection methods.
Our goal is to illuminate progress in the area, and identify strengths and weaknesses in the current state-of-the-art.
In doing so we aim to provide guidance as to the use of hate-speech detection in practice, quantify the state-of-the-art, and identify future research directions.
arXiv Detail & Related papers (2022-02-19T03:48:20Z) - Addressing the Challenges of Cross-Lingual Hate Speech Detection [115.1352779982269]
In this paper we focus on cross-lingual transfer learning to support hate speech detection in low-resource languages.
We leverage cross-lingual word embeddings to train our neural network systems on the source language and apply it to the target language.
We investigate the issue of label imbalance of hate speech datasets, since the high ratio of non-hate examples compared to hate examples often leads to low model performance.
arXiv Detail & Related papers (2022-01-15T20:48:14Z) - DeepHate: Hate Speech Detection via Multi-Faceted Text Representations [8.192671048046687]
DeepHate is a novel deep learning model that combines multi-faceted text representations such as word embeddings, sentiments, and topical information.
We conduct extensive experiments and evaluate DeepHate on three large publicly available real-world datasets.
arXiv Detail & Related papers (2021-03-14T16:11:30Z) - "Notic My Speech" -- Blending Speech Patterns With Multimedia [65.91370924641862]
We propose a view-temporal attention mechanism to model both the view dependence and the visemic importance in speech recognition and understanding.
Our proposed method outperformed the existing work by 4.99% in terms of the viseme error rate.
We show that there is a strong correlation between our model's understanding of multi-view speech and the human perception.
arXiv Detail & Related papers (2020-06-12T06:51:55Z) - Investigating Deep Learning Approaches for Hate Speech Detection in
Social Media [20.974715256618754]
The misuse of freedom of expression has led to the increase of various cyber crimes and anti-social activities.
Hate speech is one such issue that needs to be addressed very seriously as otherwise, this could pose threats to the integrity of the social fabrics.
In this paper, we proposed deep learning approaches utilizing various embeddings for detecting various types of hate speeches in social media.
arXiv Detail & Related papers (2020-05-29T17:28:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.