Adversarial Graph Contrastive Learning with Information Regularization
- URL: http://arxiv.org/abs/2202.06491v5
- Date: Sat, 16 Dec 2023 04:04:46 GMT
- Title: Adversarial Graph Contrastive Learning with Information Regularization
- Authors: Shengyu Feng, Baoyu Jing, Yada Zhu, Hanghang Tong
- Abstract summary: Contrastive learning is an effective method in graph representation learning.
Data augmentation on graphs is far less intuitive and much harder to provide high-quality contrastive samples.
We propose a simple but effective method, Adversarial Graph Contrastive Learning (ARIEL)
It consistently outperforms the current graph contrastive learning methods in the node classification task over various real-world datasets.
- Score: 51.14695794459399
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive learning is an effective unsupervised method in graph
representation learning. Recently, the data augmentation based contrastive
learning method has been extended from images to graphs. However, most prior
works are directly adapted from the models designed for images. Unlike the data
augmentation on images, the data augmentation on graphs is far less intuitive
and much harder to provide high-quality contrastive samples, which are the key
to the performance of contrastive learning models. This leaves much space for
improvement over the existing graph contrastive learning frameworks. In this
work, by introducing an adversarial graph view and an information regularizer,
we propose a simple but effective method, Adversarial Graph Contrastive
Learning (ARIEL), to extract informative contrastive samples within a
reasonable constraint. It consistently outperforms the current graph
contrastive learning methods in the node classification task over various
real-world datasets and further improves the robustness of graph contrastive
learning. The code is at https://github.com/Shengyu-Feng/ARIEL.
Related papers
- Uncovering Capabilities of Model Pruning in Graph Contrastive Learning [0.0]
We reformulate the problem of graph contrastive learning via contrasting different model versions rather than augmented views.
We extensively validate our method on various benchmarks regarding graph classification via unsupervised and transfer learning.
arXiv Detail & Related papers (2024-10-27T07:09:31Z) - Spectral Augmentations for Graph Contrastive Learning [50.149996923976836]
Contrastive learning has emerged as a premier method for learning representations with or without supervision.
Recent studies have shown its utility in graph representation learning for pre-training.
We propose a set of well-motivated graph transformation operations to provide a bank of candidates when constructing augmentations for a graph contrastive objective.
arXiv Detail & Related papers (2023-02-06T16:26:29Z) - Localized Contrastive Learning on Graphs [110.54606263711385]
We introduce a simple yet effective contrastive model named Localized Graph Contrastive Learning (Local-GCL)
In spite of its simplicity, Local-GCL achieves quite competitive performance in self-supervised node representation learning tasks on graphs with various scales and properties.
arXiv Detail & Related papers (2022-12-08T23:36:00Z) - ARIEL: Adversarial Graph Contrastive Learning [51.14695794459399]
ARIEL consistently outperforms the current graph contrastive learning methods for both node-level and graph-level classification tasks.
ARIEL is more robust in the face of adversarial attacks.
arXiv Detail & Related papers (2022-08-15T01:24:42Z) - Graph Self-supervised Learning with Accurate Discrepancy Learning [64.69095775258164]
We propose a framework that aims to learn the exact discrepancy between the original and the perturbed graphs, coined as Discrepancy-based Self-supervised LeArning (D-SLA)
We validate our method on various graph-related downstream tasks, including molecular property prediction, protein function prediction, and link prediction tasks, on which our model largely outperforms relevant baselines.
arXiv Detail & Related papers (2022-02-07T08:04:59Z) - Dual Space Graph Contrastive Learning [82.81372024482202]
We propose a novel graph contrastive learning method, namely textbfDual textbfSpace textbfGraph textbfContrastive (DSGC) Learning.
Since both spaces have their own advantages to represent graph data in the embedding spaces, we hope to utilize graph contrastive learning to bridge the spaces and leverage advantages from both sides.
arXiv Detail & Related papers (2022-01-19T04:10:29Z) - Bootstrapping Informative Graph Augmentation via A Meta Learning
Approach [21.814940639910358]
In graph contrastive learning, benchmark methods apply various graph augmentation approaches.
Most of the augmentation methods are non-learnable, which causes the issue of generating unbeneficial augmented graphs.
We motivate our method to generate augmented graph by a learnable graph augmenter, called MEta Graph Augmentation (MEGA)
arXiv Detail & Related papers (2022-01-11T07:15:13Z) - InfoGCL: Information-Aware Graph Contrastive Learning [26.683911257080304]
We study how graph information is transformed and transferred during the contrastive learning process.
We propose an information-aware graph contrastive learning framework called InfoGCL.
We show for the first time that all recent graph contrastive learning methods can be unified by our framework.
arXiv Detail & Related papers (2021-10-28T21:10:39Z) - Multi-Level Graph Contrastive Learning [38.022118893733804]
We propose a Multi-Level Graph Contrastive Learning (MLGCL) framework for learning robust representation of graph data by contrasting space views of graphs.
The original graph is first-order approximation structure and contains uncertainty or error, while the $k$NN graph generated by encoding features preserves high-order proximity.
Extensive experiments indicate MLGCL achieves promising results compared with the existing state-of-the-art graph representation learning methods on seven datasets.
arXiv Detail & Related papers (2021-07-06T14:24:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.