DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex
Hazard Structures in Survival Analysis
- URL: http://arxiv.org/abs/2202.07423v1
- Date: Sat, 12 Feb 2022 11:38:57 GMT
- Title: DeepPAMM: Deep Piecewise Exponential Additive Mixed Models for Complex
Hazard Structures in Survival Analysis
- Authors: Philipp Kopper, Simon Wiegrebe, Bernd Bischl, Andreas Bender, David
R\"ugamer
- Abstract summary: Survival analysis (SA) is an active field of research that is concerned with time-to-event outcomes.
Despite its importance, SA remains challenging due to small-scale data sets and complex outcome distributions.
We propose DeepPAMM, a versatile deep learning framework that is well-founded from a statistical point of view, yet with enough flexibility for modeling complex hazard structures.
- Score: 0.7349727826230864
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Survival analysis (SA) is an active field of research that is concerned with
time-to-event outcomes and is prevalent in many domains, particularly
biomedical applications. Despite its importance, SA remains challenging due to
small-scale data sets and complex outcome distributions, concealed by
truncation and censoring processes. The piecewise exponential additive mixed
model (PAMM) is a model class addressing many of these challenges, yet PAMMs
are not applicable in high-dimensional feature settings or in the case of
unstructured or multimodal data. We unify existing approaches by proposing
DeepPAMM, a versatile deep learning framework that is well-founded from a
statistical point of view, yet with enough flexibility for modeling complex
hazard structures. We illustrate that DeepPAMM is competitive with other
machine learning approaches with respect to predictive performance while
maintaining interpretability through benchmark experiments and an extended case
study.
Related papers
- Utilizing Large Language Models for Event Deconstruction to Enhance Multimodal Aspect-Based Sentiment Analysis [2.1329326061804816]
This paper introduces Large Language Models (LLMs) for event decomposition and proposes a reinforcement learning framework for Multimodal Aspect-based Sentiment Analysis (MABSA-RL)
Experimental results show that MABSA-RL outperforms existing advanced methods on two benchmark datasets.
arXiv Detail & Related papers (2024-10-18T03:40:45Z) - Investigating the Impact of Model Complexity in Large Language Models [3.7919508292745676]
Large Language Models (LLMs) based on the pre-trained fine-tuning paradigm have become pivotal in solving natural language processing tasks.
In this paper, we focus on autoregressive LLMs and propose to employ Hidden Markov Models (HMMs) to model them.
arXiv Detail & Related papers (2024-10-01T13:53:44Z) - Amortized Bayesian Multilevel Models [9.831471158899644]
Multilevel models (MLMs) are a central building block of the Bayesian workflow.
MLMs pose significant computational challenges, often rendering their estimation and evaluation intractable within reasonable time constraints.
Recent advances in simulation-based inference offer promising solutions for addressing complex probabilistic models using deep generative networks.
We explore a family of neural network architectures that leverage the probabilistic factorization of multilevel models to facilitate efficient neural network training and subsequent near-instant posterior inference on unseen data sets.
arXiv Detail & Related papers (2024-08-23T17:11:04Z) - HyperMM : Robust Multimodal Learning with Varying-sized Inputs [4.377889826841039]
HyperMM is an end-to-end framework designed for learning with varying-sized inputs.
We introduce a novel strategy for training a universal feature extractor using a conditional hypernetwork.
We experimentally demonstrate the advantages of our method in two tasks: Alzheimer's disease detection and breast cancer classification.
arXiv Detail & Related papers (2024-07-30T12:13:18Z) - Assessing biomedical knowledge robustness in large language models by query-efficient sampling attacks [0.6282171844772422]
An increasing depth of parametric domain knowledge in large language models (LLMs) is fueling their rapid deployment in real-world applications.
The recent discovery of named entities as adversarial examples in natural language processing tasks raises questions about their potential impact on the knowledge robustness of pre-trained and finetuned LLMs.
We developed an embedding-space attack based on powerscaled distance-weighted sampling to assess the robustness of their biomedical knowledge.
arXiv Detail & Related papers (2024-02-16T09:29:38Z) - On Least Square Estimation in Softmax Gating Mixture of Experts [78.3687645289918]
We investigate the performance of the least squares estimators (LSE) under a deterministic MoE model.
We establish a condition called strong identifiability to characterize the convergence behavior of various types of expert functions.
Our findings have important practical implications for expert selection.
arXiv Detail & Related papers (2024-02-05T12:31:18Z) - Querying Easily Flip-flopped Samples for Deep Active Learning [63.62397322172216]
Active learning is a machine learning paradigm that aims to improve the performance of a model by strategically selecting and querying unlabeled data.
One effective selection strategy is to base it on the model's predictive uncertainty, which can be interpreted as a measure of how informative a sample is.
This paper proposes the it least disagree metric (LDM) as the smallest probability of disagreement of the predicted label.
arXiv Detail & Related papers (2024-01-18T08:12:23Z) - Differentiable Agent-based Epidemiology [71.81552021144589]
We introduce GradABM: a scalable, differentiable design for agent-based modeling that is amenable to gradient-based learning with automatic differentiation.
GradABM can quickly simulate million-size populations in few seconds on commodity hardware, integrate with deep neural networks and ingest heterogeneous data sources.
arXiv Detail & Related papers (2022-07-20T07:32:02Z) - FiLM-Ensemble: Probabilistic Deep Learning via Feature-wise Linear
Modulation [69.34011200590817]
We introduce FiLM-Ensemble, a deep, implicit ensemble method based on the concept of Feature-wise Linear Modulation.
By modulating the network activations of a single deep network with FiLM, one obtains a model ensemble with high diversity.
We show that FiLM-Ensemble outperforms other implicit ensemble methods, and it comes very close to the upper bound of an explicit ensemble of networks.
arXiv Detail & Related papers (2022-05-31T18:33:15Z) - Efficient Reinforcement Learning in Block MDPs: A Model-free
Representation Learning Approach [73.62265030773652]
We present BRIEE, an algorithm for efficient reinforcement learning in Markov Decision Processes with block-structured dynamics.
BRIEE interleaves latent states discovery, exploration, and exploitation together, and can provably learn a near-optimal policy.
We show that BRIEE is more sample efficient than the state-of-art Block MDP algorithm HOMER RL and other empirical baselines on challenging rich-observation combination lock problems.
arXiv Detail & Related papers (2022-01-31T19:47:55Z) - Sample-Efficient Reinforcement Learning of Undercomplete POMDPs [91.40308354344505]
This work shows that these hardness barriers do not preclude efficient reinforcement learning for rich and interesting subclasses of Partially Observable Decision Processes (POMDPs)
We present a sample-efficient algorithm, OOM-UCB, for episodic finite undercomplete POMDPs, where the number of observations is larger than the number of latent states and where exploration is essential for learning, thus distinguishing our results from prior works.
arXiv Detail & Related papers (2020-06-22T17:58:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.