A Global Survey of Technological Resources and Datasets on COVID-19
- URL: http://arxiv.org/abs/2202.07445v1
- Date: Sun, 6 Feb 2022 04:37:14 GMT
- Title: A Global Survey of Technological Resources and Datasets on COVID-19
- Authors: Manoj Muniswamaiah, Tilak Agerwala, Charles C. Tappert
- Abstract summary: The application and successful utilization of technological resources in developing solutions to health, safety, and economic issues caused by COVID-19 indicate the importance of technology in curbing COVID-19.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The application and successful utilization of technological resources in
developing solutions to health, safety, and economic issues caused by COVID-19
indicate the importance of technology in curbing COVID-19. Also, the medical
field has had to race against tie to develop and distribute the COVID-19
vaccine. This endeavour became successful with the vaccines created and
approved in less than a year, a feat in medical history. Currently, much work
is being done on data collection, where all significant factors impacting the
disease are recorded. These factors include confirmed cases, death rates,
vaccine rates, hospitalization data, and geographic regions affected by the
pandemic. Continued research and use of technological resources are highly
recommendable-the paper surveys list of packages, applications and datasets
used to analyse COVID-19.
Related papers
- CoVScreen: Pitfalls and recommendations for screening COVID-19 using Chest X-rays [1.0878040851637998]
The novel coronavirus (COVID-19), a highly infectious respiratory disease caused by the SARS-CoV-2 has emerged as an unprecedented healthcare crisis.
Early screening and diagnosis of symptomatic patients plays crucial role in isolation of patient to help stop community transmission.
Due to its accessibility, availability, lower-cost, ease of sanitisation, and portable setup, chest X-Ray imaging can serve as an effective screening and diagnostic tool.
arXiv Detail & Related papers (2024-05-13T12:03:15Z) - Unsupervised Text Mining of COVID-19 Records [0.0]
Twitter as a powerful tool can help researchers measure public health in response to COVID-19.
This paper preprocessed the existing medical dataset regarding COVID-19 named CORD-19 and annotated the dataset for supervised classification tasks.
arXiv Detail & Related papers (2021-09-08T05:57:22Z) - Artificial Intelligence (AI) and Big Data for Coronavirus (COVID-19)
Pandemic: A Survey on the State-of-the-Arts [10.741018907229927]
The very first infected novel coronavirus case (COVID-19) was found in Hubei, China in Dec. 2019.
The COVID-19 pandemic has spread over 214 countries and areas in the world, and has significantly affected every aspect of our daily lives.
Motivated by recent advances and applications of artificial intelligence (AI) and big data in various areas, this paper aims at emphasizing their importance in responding to the COVID-19 outbreak.
arXiv Detail & Related papers (2021-07-17T13:12:30Z) - COVIDx-US -- An open-access benchmark dataset of ultrasound imaging data
for AI-driven COVID-19 analytics [116.6248556979572]
COVIDx-US is an open-access benchmark dataset of COVID-19 related ultrasound imaging data.
It consists of 93 lung ultrasound videos and 10,774 processed images of patients infected with SARS-CoV-2 pneumonia, non-SARS-CoV-2 pneumonia, as well as healthy control cases.
arXiv Detail & Related papers (2021-03-18T03:31:33Z) - Understanding the temporal evolution of COVID-19 research through
machine learning and natural language processing [66.63200823918429]
The outbreak of the novel coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has been continuously affecting human lives and communities around the world.
We used multiple data sources, i.e., PubMed and ArXiv, and built several machine learning models to characterize the landscape of current COVID-19 research.
Our findings confirm the types of research available in PubMed and ArXiv differ significantly, with the former exhibiting greater diversity in terms of COVID-19 related issues.
arXiv Detail & Related papers (2020-07-22T18:02:39Z) - A Survey on Applications of Artificial Intelligence in Fighting Against
COVID-19 [75.84689958489724]
The COVID-19 pandemic caused by the SARS-CoV-2 virus has spread rapidly worldwide, leading to a global outbreak.
As a powerful tool against COVID-19, artificial intelligence (AI) technologies are widely used in combating this pandemic.
This survey presents medical and AI researchers with a comprehensive view of the existing and potential applications of AI technology in combating COVID-19.
arXiv Detail & Related papers (2020-07-04T22:48:15Z) - Coronavirus Knowledge Graph: A Case Study [4.646516629534201]
We use several Machine Learning, Deep Learning, and Knowledge Graph construction and mining techniques to identify COVID-19 related experts and bio-entities.
We suggest possible techniques to predict related diseases, drug candidates, gene, gene mutations, and related compounds.
arXiv Detail & Related papers (2020-07-04T03:55:31Z) - A Study of Knowledge Sharing related to Covid-19 Pandemic in Stack
Overflow [69.5231754305538]
Study of 464 Stack Overflow questions posted mainly in February and March 2020 and leveraging the power of text mining.
Findings reveal that indeed this global crisis sparked off an intense and increasing activity in Stack Overflow with most post topics reflecting a strong interest on the analysis of Covid-19 data.
arXiv Detail & Related papers (2020-04-18T08:19:46Z) - Mapping the Landscape of Artificial Intelligence Applications against
COVID-19 [59.30734371401316]
COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization.
We present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence to tackle many aspects of the COVID-19 crisis.
arXiv Detail & Related papers (2020-03-25T12:30:33Z) - COVID-Net: A Tailored Deep Convolutional Neural Network Design for
Detection of COVID-19 Cases from Chest X-Ray Images [93.0013343535411]
We introduce COVID-Net, a deep convolutional neural network design tailored for the detection of COVID-19 cases from chest X-ray (CXR) images.
To the best of the authors' knowledge, COVID-Net is one of the first open source network designs for COVID-19 detection from CXR images.
We also introduce COVIDx, an open access benchmark dataset that we generated comprising of 13,975 CXR images across 13,870 patient patient cases.
arXiv Detail & Related papers (2020-03-22T12:26:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.