Federated Stochastic Gradient Descent Begets Self-Induced Momentum
- URL: http://arxiv.org/abs/2202.08402v1
- Date: Thu, 17 Feb 2022 02:01:37 GMT
- Title: Federated Stochastic Gradient Descent Begets Self-Induced Momentum
- Authors: Howard H. Yang, Zuozhu Liu, Yaru Fu, Tony Q. S. Quek, H. Vincent Poor
- Abstract summary: Federated learning (FL) is an emerging machine learning method that can be applied in mobile edge systems.
We show that running to the gradient descent (SGD) in such a setting can be viewed as adding a momentum-like term to the global aggregation process.
- Score: 151.4322255230084
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated learning (FL) is an emerging machine learning method that can be
applied in mobile edge systems, in which a server and a host of clients
collaboratively train a statistical model utilizing the data and computation
resources of the clients without directly exposing their privacy-sensitive
data. We show that running stochastic gradient descent (SGD) in such a setting
can be viewed as adding a momentum-like term to the global aggregation process.
Based on this finding, we further analyze the convergence rate of a federated
learning system by accounting for the effects of parameter staleness and
communication resources. These results advance the understanding of the
Federated SGD algorithm, and also forges a link between staleness analysis and
federated computing systems, which can be useful for systems designers.
Related papers
- Gradient-Congruity Guided Federated Sparse Training [31.793271982853188]
Federated learning (FL) is a distributed machine learning technique that facilitates this process while preserving data privacy.
FL also faces challenges such as high computational and communication costs regarding resource-constrained devices.
We propose the Gradient-Congruity Guided Federated Sparse Training (FedSGC), a novel method that integrates dynamic sparse training and gradient congruity inspection into federated learning framework.
arXiv Detail & Related papers (2024-05-02T11:29:48Z) - Federated Learning with Projected Trajectory Regularization [65.6266768678291]
Federated learning enables joint training of machine learning models from distributed clients without sharing their local data.
One key challenge in federated learning is to handle non-identically distributed data across the clients.
We propose a novel federated learning framework with projected trajectory regularization (FedPTR) for tackling the data issue.
arXiv Detail & Related papers (2023-12-22T02:12:08Z) - Fed-QSSL: A Framework for Personalized Federated Learning under Bitwidth
and Data Heterogeneity [14.313847382199059]
Federated quantization-based self-supervised learning scheme (Fed-QSSL) designed to address heterogeneity in FL systems.
Fed-QSSL deploys de-quantization, weighted aggregation and re-quantization, ultimately creating models personalized to both data distribution and specific infrastructure of each client's device.
arXiv Detail & Related papers (2023-12-20T19:11:19Z) - Efficient Cross-Domain Federated Learning by MixStyle Approximation [0.3277163122167433]
We introduce a privacy-preserving, resource-efficient Federated Learning concept for client adaptation in hardware-constrained environments.
Our approach includes server model pre-training on source data and subsequent fine-tuning on target data via low-end clients.
Preliminary results indicate that our method reduces computational and transmission costs while maintaining competitive performance on downstream tasks.
arXiv Detail & Related papers (2023-12-12T08:33:34Z) - Effectively Heterogeneous Federated Learning: A Pairing and Split
Learning Based Approach [16.093068118849246]
This paper presents a novel split federated learning (SFL) framework that pairs clients with different computational resources.
A greedy algorithm is proposed by reconstructing the optimization of training latency as a graph edge selection problem.
Simulation results show the proposed method can significantly improve the FL training speed and achieve high performance.
arXiv Detail & Related papers (2023-08-26T11:10:54Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Time-sensitive Learning for Heterogeneous Federated Edge Intelligence [52.83633954857744]
We investigate real-time machine learning in a federated edge intelligence (FEI) system.
FEI systems exhibit heterogenous communication and computational resource distribution.
We propose a time-sensitive federated learning (TS-FL) framework to minimize the overall run-time for collaboratively training a shared ML model.
arXiv Detail & Related papers (2023-01-26T08:13:22Z) - Stochastic Coded Federated Learning with Convergence and Privacy
Guarantees [8.2189389638822]
Federated learning (FL) has attracted much attention as a privacy-preserving distributed machine learning framework.
This paper proposes a coded federated learning framework, namely coded federated learning (SCFL) to mitigate the straggler issue.
We characterize the privacy guarantee by the mutual information differential privacy (MI-DP) and analyze the convergence performance in federated learning.
arXiv Detail & Related papers (2022-01-25T04:43:29Z) - Towards Fair Federated Learning with Zero-Shot Data Augmentation [123.37082242750866]
Federated learning has emerged as an important distributed learning paradigm, where a server aggregates a global model from many client-trained models while having no access to the client data.
We propose a novel federated learning system that employs zero-shot data augmentation on under-represented data to mitigate statistical heterogeneity and encourage more uniform accuracy performance across clients in federated networks.
We study two variants of this scheme, Fed-ZDAC (federated learning with zero-shot data augmentation at the clients) and Fed-ZDAS (federated learning with zero-shot data augmentation at the server).
arXiv Detail & Related papers (2021-04-27T18:23:54Z) - Straggler-Resilient Federated Learning: Leveraging the Interplay Between
Statistical Accuracy and System Heterogeneity [57.275753974812666]
Federated learning involves learning from data samples distributed across a network of clients while the data remains local.
In this paper, we propose a novel straggler-resilient federated learning method that incorporates statistical characteristics of the clients' data to adaptively select the clients in order to speed up the learning procedure.
arXiv Detail & Related papers (2020-12-28T19:21:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.