ADD 2022: the First Audio Deep Synthesis Detection Challenge
- URL: http://arxiv.org/abs/2202.08433v3
- Date: Tue, 2 Jul 2024 04:06:53 GMT
- Title: ADD 2022: the First Audio Deep Synthesis Detection Challenge
- Authors: Jiangyan Yi, Ruibo Fu, Jianhua Tao, Shuai Nie, Haoxin Ma, Chenglong Wang, Tao Wang, Zhengkun Tian, Xiaohui Zhang, Ye Bai, Cunhang Fan, Shan Liang, Shiming Wang, Shuai Zhang, Xinrui Yan, Le Xu, Zhengqi Wen, Haizhou Li, Zheng Lian, Bin Liu,
- Abstract summary: The first Audio Deep synthesis Detection challenge (ADD) was motivated to fill in the gap.
The ADD 2022 includes three tracks: low-quality fake audio detection (LF), partially fake audio detection (PF) and audio fake game (FG)
- Score: 92.41777858637556
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Audio deepfake detection is an emerging topic, which was included in the ASVspoof 2021. However, the recent shared tasks have not covered many real-life and challenging scenarios. The first Audio Deep synthesis Detection challenge (ADD) was motivated to fill in the gap. The ADD 2022 includes three tracks: low-quality fake audio detection (LF), partially fake audio detection (PF) and audio fake game (FG). The LF track focuses on dealing with bona fide and fully fake utterances with various real-world noises etc. The PF track aims to distinguish the partially fake audio from the real. The FG track is a rivalry game, which includes two tasks: an audio generation task and an audio fake detection task. In this paper, we describe the datasets, evaluation metrics, and protocols. We also report major findings that reflect the recent advances in audio deepfake detection tasks.
Related papers
- An RFP dataset for Real, Fake, and Partially fake audio detection [0.36832029288386137]
The paper presents the RFP da-taset, which comprises five distinct audio types: partial fake (PF), audio with noise, voice conversion (VC), text-to-speech (TTS), and real.
The data are then used to evaluate several detection models, revealing that the available models incur a markedly higher equal error rate (EER) when detecting PF audio instead of entirely fake audio.
arXiv Detail & Related papers (2024-04-26T23:00:56Z) - TranssionADD: A multi-frame reinforcement based sequence tagging model
for audio deepfake detection [11.27584658526063]
The second Audio Deepfake Detection Challenge (ADD 2023) aims to detect and analyze deepfake speech utterances.
We propose our novel TranssionADD system as a solution to the challenging problem of model robustness and audio segment outliers.
Our best submission achieved 2nd place in Track 2, demonstrating the effectiveness and robustness of our proposed system.
arXiv Detail & Related papers (2023-06-27T05:18:25Z) - Betray Oneself: A Novel Audio DeepFake Detection Model via
Mono-to-Stereo Conversion [70.99781219121803]
Audio Deepfake Detection (ADD) aims to detect the fake audio generated by text-to-speech (TTS), voice conversion (VC) and replay, etc.
We propose a novel ADD model, termed as M2S-ADD, that attempts to discover audio authenticity cues during the mono-to-stereo conversion process.
arXiv Detail & Related papers (2023-05-25T02:54:29Z) - SceneFake: An Initial Dataset and Benchmarks for Scene Fake Audio Detection [54.74467470358476]
This paper proposes a dataset for scene fake audio detection named SceneFake.
A manipulated audio is generated by only tampering with the acoustic scene of an original audio.
Some scene fake audio detection benchmark results on the SceneFake dataset are reported in this paper.
arXiv Detail & Related papers (2022-11-11T09:05:50Z) - An Initial Investigation for Detecting Vocoder Fingerprints of Fake
Audio [53.134423013599914]
We propose a new problem for detecting vocoder fingerprints of fake audio.
Experiments are conducted on the datasets synthesized by eight state-of-the-art vocoders.
arXiv Detail & Related papers (2022-08-20T09:23:21Z) - Partially Fake Audio Detection by Self-attention-based Fake Span
Discovery [89.21979663248007]
We propose a novel framework by introducing the question-answering (fake span discovery) strategy with the self-attention mechanism to detect partially fake audios.
Our submission ranked second in the partially fake audio detection track of ADD 2022.
arXiv Detail & Related papers (2022-02-14T13:20:55Z) - Half-Truth: A Partially Fake Audio Detection Dataset [60.08010668752466]
This paper develops a dataset for half-truth audio detection (HAD)
Partially fake audio in the HAD dataset involves only changing a few words in an utterance.
We can not only detect fake uttrances but also localize manipulated regions in a speech using this dataset.
arXiv Detail & Related papers (2021-04-08T08:57:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.