Discovering Fine-Grained Semantics in Knowledge Graph Relations
- URL: http://arxiv.org/abs/2202.08917v1
- Date: Thu, 17 Feb 2022 22:05:41 GMT
- Title: Discovering Fine-Grained Semantics in Knowledge Graph Relations
- Authors: Nitisha Jain and Ralf Krestel
- Abstract summary: Polysemous relations between different types of entities represent multiple semantics.
For numerous use cases, such as entity type classification, question answering and knowledge graph completion, the correct semantic interpretation is necessary.
We propose a strategy for discovering the different semantics associated with abstract relations and deriving many sub-relations with fine-grained meaning.
- Score: 5.619233302594469
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When it comes to comprehending and analyzing multi-relational data, the
semantics of relations are crucial. Polysemous relations between different
types of entities, that represent multiple semantics, are common in real-world
relational datasets represented by knowledge graphs. For numerous use cases,
such as entity type classification, question answering and knowledge graph
completion, the correct semantic interpretation of these relations is
necessary. In this work, we provide a strategy for discovering the different
semantics associated with abstract relations and deriving many sub-relations
with fine-grained meaning. To do this, we leverage the types of the entities
associated with the relations and cluster the vector representations of
entities and relations. The suggested method is able to automatically discover
the best number of sub-relations for a polysemous relation and determine their
semantic interpretation, according to our empirical evaluation.
Related papers
- Relation-Aware Question Answering for Heterogeneous Knowledge Graphs [37.38138785470231]
Existing retrieval-based approaches solve this task by concentrating on the specific relation at different hops.
We claim they fail to utilize information from head-tail entities and the semantic connection between relations to enhance the current relation representation.
Our approach achieves a significant performance gain over the prior state-of-the-art.
arXiv Detail & Related papers (2023-12-19T08:01:48Z) - More than Classification: A Unified Framework for Event Temporal
Relation Extraction [61.44799147458621]
Event temporal relation extraction(ETRE) is usually formulated as a multi-label classification task.
We observe that all relations can be interpreted using the start and end time points of events.
We propose a unified event temporal relation extraction framework, which transforms temporal relations into logical expressions of time points.
arXiv Detail & Related papers (2023-05-28T02:09:08Z) - ViRel: Unsupervised Visual Relations Discovery with Graph-level Analogy [65.5580334698777]
ViRel is a method for unsupervised discovery and learning of Visual Relations with graph-level analogy.
We show that our method achieves above 95% accuracy in relation classification.
We further generalizes to unseen tasks with more complicated relational structures.
arXiv Detail & Related papers (2022-07-04T16:56:45Z) - Exploiting Global Semantic Similarities in Knowledge Graphs by
Relational Prototype Entities [55.952077365016066]
An empirical observation is that the head and tail entities connected by the same relation often share similar semantic attributes.
We propose a novel approach, which introduces a set of virtual nodes called textittextbfrelational prototype entities.
By enforcing the entities' embeddings close to their associated prototypes' embeddings, our approach can effectively encourage the global semantic similarities of entities.
arXiv Detail & Related papers (2022-06-16T09:25:33Z) - Discovering Latent Representations of Relations for Interacting Systems [2.2844557930775484]
We propose the DiScovering Latent Relation (DSLR) model, which is flexibly applicable even if the number of relations is unknown or many types of relations exist.
The flexibility of our DSLR model comes from the design concept of our encoder that represents the relation between entities in a latent space.
The experiments show that the proposed method is suitable for analyzing dynamic graphs with an unknown number of complex relations.
arXiv Detail & Related papers (2021-11-10T03:32:09Z) - Transformer-based Dual Relation Graph for Multi-label Image Recognition [56.12543717723385]
We propose a novel Transformer-based Dual Relation learning framework.
We explore two aspects of correlation, i.e., structural relation graph and semantic relation graph.
Our approach achieves new state-of-the-art on two popular multi-label recognition benchmarks.
arXiv Detail & Related papers (2021-10-10T07:14:52Z) - Learning Relation Prototype from Unlabeled Texts for Long-tail Relation
Extraction [84.64435075778988]
We propose a general approach to learn relation prototypes from unlabeled texts.
We learn relation prototypes as an implicit factor between entities.
We conduct experiments on two publicly available datasets: New York Times and Google Distant Supervision.
arXiv Detail & Related papers (2020-11-27T06:21:12Z) - Learning Informative Representations of Biomedical Relations with Latent
Variable Models [2.4366811507669115]
We propose a latent variable model with an arbitrarily flexible distribution to represent the relation between an entity pair.
We demonstrate that our model achieves results competitive with strong baselines for both tasks while having fewer parameters and being significantly faster to train.
arXiv Detail & Related papers (2020-11-20T08:56:31Z) - Logic-guided Semantic Representation Learning for Zero-Shot Relation
Classification [31.887770824130957]
We propose a novel logic-guided semantic representation learning model for zero-shot relation classification.
Our approach builds connections between seen and unseen relations via implicit and explicit semantic representations with knowledge graph embeddings and logic rules.
arXiv Detail & Related papers (2020-10-30T04:30:09Z) - Learning to Decouple Relations: Few-Shot Relation Classification with
Entity-Guided Attention and Confusion-Aware Training [49.9995628166064]
We propose CTEG, a model equipped with two mechanisms to learn to decouple easily-confused relations.
On the one hand, an EGA mechanism is introduced to guide the attention to filter out information causing confusion.
On the other hand, a Confusion-Aware Training (CAT) method is proposed to explicitly learn to distinguish relations.
arXiv Detail & Related papers (2020-10-21T11:07:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.