Towards better understanding and better generalization of few-shot
classification in histology images with contrastive learning
- URL: http://arxiv.org/abs/2202.09059v1
- Date: Fri, 18 Feb 2022 07:48:34 GMT
- Title: Towards better understanding and better generalization of few-shot
classification in histology images with contrastive learning
- Authors: Jiawei Yang, Hanbo Chen, Jiangpeng Yan, Xiaoyu Chen, Jianhua Yao
- Abstract summary: Few-shot learning is an established topic in natural images for years, but few work is attended to histology images.
We propose to incorporate contrastive learning (CL) with latent augmentation (LA) to build a few-shot system.
In experiments, we find i) models learned by CL generalize better than supervised learning for histology images in unseen classes, and ii) LA brings consistent gains over baselines.
- Score: 7.620702640026243
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Few-shot learning is an established topic in natural images for years, but
few work is attended to histology images, which is of high clinical value since
well-labeled datasets and rare abnormal samples are expensive to collect. Here,
we facilitate the study of few-shot learning in histology images by setting up
three cross-domain tasks that simulate real clinics problems. To enable
label-efficient learning and better generalizability, we propose to incorporate
contrastive learning (CL) with latent augmentation (LA) to build a few-shot
system. CL learns useful representations without manual labels, while LA
transfers semantic variations of the base dataset in an unsupervised way. These
two components fully exploit unlabeled training data and can scale gracefully
to other label-hungry problems. In experiments, we find i) models learned by CL
generalize better than supervised learning for histology images in unseen
classes, and ii) LA brings consistent gains over baselines. Prior studies of
self-supervised learning mainly focus on ImageNet-like images, which only
present a dominant object in their centers. Recent attention has been paid to
images with multi-objects and multi-textures. Histology images are a natural
choice for such a study. We show the superiority of CL over supervised learning
in terms of generalization for such data and provide our empirical
understanding for this observation. The findings in this work could contribute
to understanding how the model generalizes in the context of both
representation learning and histological image analysis. Code is available.
Related papers
- Improving Human-Object Interaction Detection via Virtual Image Learning [68.56682347374422]
Human-Object Interaction (HOI) detection aims to understand the interactions between humans and objects.
In this paper, we propose to alleviate the impact of such an unbalanced distribution via Virtual Image Leaning (VIL)
A novel label-to-image approach, Multiple Steps Image Creation (MUSIC), is proposed to create a high-quality dataset that has a consistent distribution with real images.
arXiv Detail & Related papers (2023-08-04T10:28:48Z) - Mixture of Self-Supervised Learning [2.191505742658975]
Self-supervised learning works by using a pretext task which will be trained on the model before being applied to a specific task.
Previous studies have only used one type of transformation as a pretext task.
This raises the question of how it affects if more than one pretext task is used and to use a gating network to combine all pretext tasks.
arXiv Detail & Related papers (2023-07-27T14:38:32Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Pixel-Level Explanation of Multiple Instance Learning Models in
Biomedical Single Cell Images [52.527733226555206]
We investigate the use of four attribution methods to explain a multiple instance learning models.
We study two datasets of acute myeloid leukemia with over 100 000 single cell images.
We compare attribution maps with the annotations of a medical expert to see how the model's decision-making differs from the human standard.
arXiv Detail & Related papers (2023-03-15T14:00:11Z) - Mine yOur owN Anatomy: Revisiting Medical Image Segmentation with Extremely Limited Labels [54.58539616385138]
We introduce a novel semi-supervised 2D medical image segmentation framework termed Mine yOur owN Anatomy (MONA)
First, prior work argues that every pixel equally matters to the model training; we observe empirically that this alone is unlikely to define meaningful anatomical features.
Second, we construct a set of objectives that encourage the model to be capable of decomposing medical images into a collection of anatomical features.
arXiv Detail & Related papers (2022-09-27T15:50:31Z) - Lesion-Aware Contrastive Representation Learning for Histopathology
Whole Slide Images Analysis [16.264758789726223]
We propose a novel contrastive representation learning framework named Lesion-Aware Contrastive Learning (LACL) for histopathology whole slide image analysis.
The experimental results demonstrate that LACL achieves the best performance in histopathology image representation learning on different datasets.
arXiv Detail & Related papers (2022-06-27T08:39:51Z) - Contrastive Semi-Supervised Learning for 2D Medical Image Segmentation [16.517086214275654]
We present a novel semi-supervised 2D medical segmentation solution that applies Contrastive Learning (CL) on image patches, instead of full images.
These patches are meaningfully constructed using the semantic information of different classes obtained via pseudo labeling.
We also propose a novel consistency regularization scheme, which works in synergy with contrastive learning.
arXiv Detail & Related papers (2021-06-12T15:43:24Z) - Semantic Segmentation with Generative Models: Semi-Supervised Learning
and Strong Out-of-Domain Generalization [112.68171734288237]
We propose a novel framework for discriminative pixel-level tasks using a generative model of both images and labels.
We learn a generative adversarial network that captures the joint image-label distribution and is trained efficiently using a large set of unlabeled images.
We demonstrate strong in-domain performance compared to several baselines, and are the first to showcase extreme out-of-domain generalization.
arXiv Detail & Related papers (2021-04-12T21:41:25Z) - Self supervised contrastive learning for digital histopathology [0.0]
We use a contrastive self-supervised learning method called SimCLR that achieved state-of-the-art results on natural-scene images.
We find that combining multiple multi-organ datasets with different types of staining and resolution properties improves the quality of the learned features.
Linear classifiers trained on top of the learned features show that networks pretrained on digital histopathology datasets perform better than ImageNet pretrained networks.
arXiv Detail & Related papers (2020-11-27T19:18:45Z) - Deep Active Learning for Joint Classification & Segmentation with Weak
Annotator [22.271760669551817]
CNN visualization and interpretation methods, like class-activation maps (CAMs), are typically used to highlight the image regions linked to class predictions.
We propose an active learning framework, which progressively integrates pixel-level annotations during training.
Our results indicate that, by simply using random sample selection, the proposed approach can significantly outperform state-of-the-art CAMs and AL methods.
arXiv Detail & Related papers (2020-10-10T03:25:54Z) - Mining Cross-Image Semantics for Weakly Supervised Semantic Segmentation [128.03739769844736]
Two neural co-attentions are incorporated into the classifier to capture cross-image semantic similarities and differences.
In addition to boosting object pattern learning, the co-attention can leverage context from other related images to improve localization map inference.
Our algorithm sets new state-of-the-arts on all these settings, demonstrating well its efficacy and generalizability.
arXiv Detail & Related papers (2020-07-03T21:53:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.