Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation
- URL: http://arxiv.org/abs/2202.09750v1
- Date: Sun, 20 Feb 2022 07:32:12 GMT
- Title: Enhancing Affective Representations of Music-Induced EEG through
Multimodal Supervision and latent Domain Adaptation
- Authors: Kleanthis Avramidis, Christos Garoufis, Athanasia Zlatintsi, Petros
Maragos
- Abstract summary: We employ music signals as a supervisory modality to EEG, aiming to project their semantic correspondence onto a common representation space.
We utilize a bi-modal framework by combining an LSTM-based attention model to process EEG and a pre-trained model for music tagging, along with a reverse domain discriminator to align the distributions of the two modalities.
The resulting framework can be utilized for emotion recognition both directly, by performing supervised predictions from either modality, and indirectly, by providing relevant music samples to EEG input queries.
- Score: 34.726185927120355
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The study of Music Cognition and neural responses to music has been
invaluable in understanding human emotions. Brain signals, though, manifest a
highly complex structure that makes processing and retrieving meaningful
features challenging, particularly of abstract constructs like affect.
Moreover, the performance of learning models is undermined by the limited
amount of available neuronal data and their severe inter-subject variability.
In this paper we extract efficient, personalized affective representations from
EEG signals during music listening. To this end, we employ music signals as a
supervisory modality to EEG, aiming to project their semantic correspondence
onto a common representation space. We utilize a bi-modal framework by
combining an LSTM-based attention model to process EEG and a pre-trained model
for music tagging, along with a reverse domain discriminator to align the
distributions of the two modalities, further constraining the learning process
with emotion tags. The resulting framework can be utilized for emotion
recognition both directly, by performing supervised predictions from either
modality, and indirectly, by providing relevant music samples to EEG input
queries. The experimental findings show the potential of enhancing neuronal
data through stimulus information for recognition purposes and yield insights
into the distribution and temporal variance of music-induced affective
features.
Related papers
- MEEG and AT-DGNN: Improving EEG Emotion Recognition with Music Introducing and Graph-based Learning [3.840859750115109]
We present the MEEG dataset, a multi-modal collection of music-induced electroencephalogram (EEG) recordings.
We introduce the Attention-based Temporal Learner with Dynamic Graph Neural Network (AT-DGNN), a novel framework for EEG-based emotion recognition.
arXiv Detail & Related papers (2024-07-08T01:58:48Z) - R&B -- Rhythm and Brain: Cross-subject Decoding of Music from Human Brain Activity [0.12289361708127873]
Music is a universal phenomenon that profoundly influences human experiences across cultures.
This study investigates whether music can be decoded from human brain activity measured with functional MRI (fMRI) during its perception.
arXiv Detail & Related papers (2024-06-21T17:11:45Z) - Multi-modal Mood Reader: Pre-trained Model Empowers Cross-Subject Emotion Recognition [23.505616142198487]
We develop a Pre-trained model based Multimodal Mood Reader for cross-subject emotion recognition.
The model learns universal latent representations of EEG signals through pre-training on large scale dataset.
Extensive experiments on public datasets demonstrate Mood Reader's superior performance in cross-subject emotion recognition tasks.
arXiv Detail & Related papers (2024-05-28T14:31:11Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Joint Contrastive Learning with Feature Alignment for Cross-Corpus EEG-based Emotion Recognition [2.1645626994550664]
We propose a novel Joint Contrastive learning framework with Feature Alignment to address cross-corpus EEG-based emotion recognition.
In the pre-training stage, a joint domain contrastive learning strategy is introduced to characterize generalizable time-frequency representations of EEG signals.
In the fine-tuning stage, JCFA is refined in conjunction with downstream tasks, where the structural connections among brain electrodes are considered.
arXiv Detail & Related papers (2024-04-15T08:21:17Z) - fMRI from EEG is only Deep Learning away: the use of interpretable DL to
unravel EEG-fMRI relationships [68.8204255655161]
We present an interpretable domain grounded solution to recover the activity of several subcortical regions from multichannel EEG data.
We recover individual spatial and time-frequency patterns of scalp EEG predictive of the hemodynamic signal in the subcortical nuclei.
arXiv Detail & Related papers (2022-10-23T15:11:37Z) - Multimodal Emotion Recognition using Transfer Learning from Speaker
Recognition and BERT-based models [53.31917090073727]
We propose a neural network-based emotion recognition framework that uses a late fusion of transfer-learned and fine-tuned models from speech and text modalities.
We evaluate the effectiveness of our proposed multimodal approach on the interactive emotional dyadic motion capture dataset.
arXiv Detail & Related papers (2022-02-16T00:23:42Z) - EEGminer: Discovering Interpretable Features of Brain Activity with
Learnable Filters [72.19032452642728]
We propose a novel differentiable EEG decoding pipeline consisting of learnable filters and a pre-determined feature extraction module.
We demonstrate the utility of our model towards emotion recognition from EEG signals on the SEED dataset and on a new EEG dataset of unprecedented size.
The discovered features align with previous neuroscience studies and offer new insights, such as marked differences in the functional connectivity profile between left and right temporal areas during music listening.
arXiv Detail & Related papers (2021-10-19T14:22:04Z) - A Novel Transferability Attention Neural Network Model for EEG Emotion
Recognition [51.203579838210885]
We propose a transferable attention neural network (TANN) for EEG emotion recognition.
TANN learns the emotional discriminative information by highlighting the transferable EEG brain regions data and samples adaptively.
This can be implemented by measuring the outputs of multiple brain-region-level discriminators and one single sample-level discriminator.
arXiv Detail & Related papers (2020-09-21T02:42:30Z) - Continuous Emotion Recognition via Deep Convolutional Autoencoder and
Support Vector Regressor [70.2226417364135]
It is crucial that the machine should be able to recognize the emotional state of the user with high accuracy.
Deep neural networks have been used with great success in recognizing emotions.
We present a new model for continuous emotion recognition based on facial expression recognition.
arXiv Detail & Related papers (2020-01-31T17:47:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.