Realistic non-Gaussian operations scheme in parity detection based
Mach-Zehnder quantum interferometry
- URL: http://arxiv.org/abs/2202.09849v2
- Date: Sat, 16 Apr 2022 14:27:38 GMT
- Title: Realistic non-Gaussian operations scheme in parity detection based
Mach-Zehnder quantum interferometry
- Authors: Chandan Kumar, Rishabh, and Shikhar Arora
- Abstract summary: We theoretically analyze phase sensitivity using parity detection based Mach Zehnder interferometer (MZI)
We consider the realistic model of photon subtraction, addition, and subtraction and derive a single expression of the Wigner function for photon subtracted, added, and catalyzed TMSV state.
We identify the ranges of squeezing and transmissivity parameters where the non-Gaussian states provide better phase sensitivity than the TMSV state.
- Score: 1.9386782072251818
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We theoretically analyze phase sensitivity using parity detection based Mach
Zehnder interferometer (MZI) with the input states generated by performing
non-Gaussian operations, viz., photon subtraction, photon addition, and photon
catalysis on a two-mode squeezed vacuum (TMSV) state. Since these non-Gaussian
operations are probabilistic, it is of utmost importance to take the success
probability into account. To this end, we consider the realistic model of
photon subtraction, addition, and catalysis and derive a single expression of
the Wigner function for photon subtracted, added, and catalyzed TMSV state. The
Wigner function is used to evaluate the lower bound on the phase sensitivity
via quantum Cramer-Rao bound and parity detection based phase sensitivity in
MZI. We identify the ranges of squeezing and transmissivity parameters where
the non-Gaussian states provide better phase sensitivity than the TMSV state.
On qualitatively taking the success probability into account, it turns out that
the photon addition is the most advantageous non-Gaussian operation. We hope
that the generalized Wigner function derived in this work will be useful in
various quantum information protocols and state characterization.
Related papers
- Optimal non-Gaussian operations in difference-intensity detection and
parity detection-based Mach-Zehnder interferometer [2.305614430520103]
We investigate the benefits of probabilistic non-Gaussian operations in phase estimation using Mach-Zehnder interferometers (MZI)
We consider an experimentally implementable model to perform three different non-Gaussian operations, namely photon subtraction (PS), photon addition (PA), and photon model (PC)
In difference-intensity detection MZI, two PC operation is found to be the most optimal, while for parity detection-based MZI, two PA operation emerges as the most optimal process.
arXiv Detail & Related papers (2023-12-17T17:52:14Z) - Experimental realization of deterministic and selective photon addition
in a bosonic mode assisted by an ancillary qubit [50.591267188664666]
Bosonic quantum error correcting codes are primarily designed to protect against single-photon loss.
Error correction requires a recovery operation that maps the error states -- which have opposite parity -- back onto the code states.
Here, we realize a collection of photon-number-selective, simultaneous photon addition operations on a bosonic mode.
arXiv Detail & Related papers (2022-12-22T23:32:21Z) - Parity-detection-based Mach-Zehnder interferometry with coherent and
non-Gaussian squeezed vacuum states as inputs [1.8070424740773694]
We theoretically explore the advantages rendered by non-Gaussian operations in phase estimation using a parity-detection-based Mach-Zehnder interferometer.
We consider a realistic model to perform three different non-Gaussian operations, namely photon subtraction, photon addition, and photon a single-mode SVS.
arXiv Detail & Related papers (2022-12-22T12:56:56Z) - Characterization of Quantumness of non-Gaussian states under the
influence of Gaussian channel [0.0]
The impact of a noisy Gaussian channel on a wide range of non-Gaussian input states is studied.
It is found that photon addition has more robust quantum mechanical properties as compared to the photon subtraction case.
arXiv Detail & Related papers (2022-12-22T07:13:41Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Enhanced phase estimation in parity detection based Mach-Zehnder
interferometer using non-Gaussian two-mode squeezed thermal input state [1.9386782072251818]
We show that non-Gaussian operations on TMST states can enhance the phase sensitivity for significant ranges of squeezing and transmissivity parameters.
We also observe that incremental advantage provided by performing these non-Gaussian operations on the TMST state is considerably higher than that of performing these operations on the TMSV state.
arXiv Detail & Related papers (2022-08-05T07:53:14Z) - Bosonic field digitization for quantum computers [62.997667081978825]
We address the representation of lattice bosonic fields in a discretized field amplitude basis.
We develop methods to predict error scaling and present efficient qubit implementation strategies.
arXiv Detail & Related papers (2021-08-24T15:30:04Z) - Enhanced nonlinear quantum metrology with weakly coupled solitons and
particle losses [58.720142291102135]
We offer an interferometric procedure for phase parameters estimation at the Heisenberg (up to 1/N) and super-Heisenberg scaling levels.
The heart of our setup is the novel soliton Josephson Junction (SJJ) system providing the formation of the quantum probe.
We illustrate that such states are close to the optimal ones even with moderate losses.
arXiv Detail & Related papers (2021-08-07T09:29:23Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Improving phase estimation using the number-conserving operations [8.123933627777628]
We propose a theoretical scheme to improve the resolution and precision of phase measurement with parity detection in the Mach-Zehnder interferometer.
The nonclassical properties of the proposed GSP-TMSV are investigated via average photon number (APN), anti-bunching effect, and degrees of two-mode squeezing.
arXiv Detail & Related papers (2020-12-04T07:47:02Z) - In and out of equilibrium quantum metrology with mean-field quantum
criticality [68.8204255655161]
We study the influence that collective transition phenomena have on quantum metrological protocols.
The single spherical quantum spin (SQS) serves as stereotypical toy model that allows analytical insights on a mean-field level.
arXiv Detail & Related papers (2020-01-09T19:20:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.