Disentangling Autoencoders (DAE)
- URL: http://arxiv.org/abs/2202.09926v1
- Date: Sun, 20 Feb 2022 22:59:13 GMT
- Title: Disentangling Autoencoders (DAE)
- Authors: Jaehoon Cha and Jeyan Thiyagalingam
- Abstract summary: We propose a novel framework for autoencoders based on the principles of symmetry transformations in group-theory.
We believe that this model leads a new field for disentanglement learning based on autoencoders without regularizers.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Noting the importance of factorizing or disentangling the latent space, we
propose a novel framework for autoencoders based on the principles of symmetry
transformations in group-theory, which is a non-probabilistic disentangling
autoencoder model. To the best of our knowledge, this is the first model that
is aiming to achieve disentanglement based on autoencoders without
regularizers. The proposed model is compared to seven state-of-the-art
generative models based on autoencoders and evaluated based on reconstruction
loss and five metrics quantifying disentanglement losses. The experiment
results show that the proposed model can have better disentanglement when
variances of each features are different. We believe that this model leads a
new field for disentanglement learning based on autoencoders without
regularizers.
Related papers
- Making the Most of your Model: Methods for Finetuning and Applying Pretrained Transformers [0.21756081703276003]
This thesis provides methods and analysis of models which make progress on this goal.
We introduce two new finetuning methods which add new capabilities to the models they are used on.
We provide theoretical and empirical insights on the divergence of model-likelihood and output quality.
arXiv Detail & Related papers (2024-08-29T03:50:24Z) - Promises and Pitfalls of Generative Masked Language Modeling: Theoretical Framework and Practical Guidelines [74.42485647685272]
We focus on Generative Masked Language Models (GMLMs)
We train a model to fit conditional probabilities of the data distribution via masking, which are subsequently used as inputs to a Markov Chain to draw samples from the model.
We adapt the T5 model for iteratively-refined parallel decoding, achieving 2-3x speedup in machine translation with minimal sacrifice in quality.
arXiv Detail & Related papers (2024-07-22T18:00:00Z) - Disentanglement via Latent Quantization [60.37109712033694]
In this work, we construct an inductive bias towards encoding to and decoding from an organized latent space.
We demonstrate the broad applicability of this approach by adding it to both basic data-re (vanilla autoencoder) and latent-reconstructing (InfoGAN) generative models.
arXiv Detail & Related papers (2023-05-28T06:30:29Z) - Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes [23.682509357305406]
Autoencoders and their variants are among the most widely used models in representation learning and generative modeling.
We propose a novel Sparse Gaussian Process Bayesian Autoencoder model in which we impose fully sparse Gaussian Process priors on the latent space of a Bayesian Autoencoder.
arXiv Detail & Related papers (2023-02-09T09:57:51Z) - On a Mechanism Framework of Autoencoders [0.0]
This paper proposes a theoretical framework on the mechanism of autoencoders.
Results of ReLU autoencoders are generalized to some non-ReLU cases.
Compared to PCA and decision trees, the advantages of (generalized) autoencoders on dimensionality reduction and classification are demonstrated.
arXiv Detail & Related papers (2022-08-15T03:51:40Z) - Deep Variational Models for Collaborative Filtering-based Recommender
Systems [63.995130144110156]
Deep learning provides accurate collaborative filtering models to improve recommender system results.
Our proposed models apply the variational concept to injectity in the latent space of the deep architecture.
Results show the superiority of the proposed approach in scenarios where the variational enrichment exceeds the injected noise effect.
arXiv Detail & Related papers (2021-07-27T08:59:39Z) - Autoencoding Variational Autoencoder [56.05008520271406]
We study the implications of this behaviour on the learned representations and also the consequences of fixing it by introducing a notion of self consistency.
We show that encoders trained with our self-consistency approach lead to representations that are robust (insensitive) to perturbations in the input introduced by adversarial attacks.
arXiv Detail & Related papers (2020-12-07T14:16:14Z) - Unsupervised Anomaly Detection with Adversarial Mirrored AutoEncoders [51.691585766702744]
We propose a variant of Adversarial Autoencoder which uses a mirrored Wasserstein loss in the discriminator to enforce better semantic-level reconstruction.
We put forward an alternative measure of anomaly score to replace the reconstruction-based metric.
Our method outperforms the current state-of-the-art methods for anomaly detection on several OOD detection benchmarks.
arXiv Detail & Related papers (2020-03-24T08:26:58Z) - Regularized Autoencoders via Relaxed Injective Probability Flow [35.39933775720789]
Invertible flow-based generative models are an effective method for learning to generate samples, while allowing for tractable likelihood computation and inference.
We propose a generative model based on probability flows that does away with the bijectivity requirement on the model and only assumes injectivity.
arXiv Detail & Related papers (2020-02-20T18:22:46Z) - Learning Autoencoders with Relational Regularization [89.53065887608088]
A new framework is proposed for learning autoencoders of data distributions.
We minimize the discrepancy between the model and target distributions, with a emphrelational regularization
We implement the framework with two scalable algorithms, making it applicable for both probabilistic and deterministic autoencoders.
arXiv Detail & Related papers (2020-02-07T17:27:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.