Measurement-Device-Independent Quantum Secure Direct Communication with
User Authentication
- URL: http://arxiv.org/abs/2202.10316v1
- Date: Mon, 21 Feb 2022 15:40:38 GMT
- Title: Measurement-Device-Independent Quantum Secure Direct Communication with
User Authentication
- Authors: Nayana Das and Goutam Paul
- Abstract summary: Quantum secure direct communication (QSDC) and deterministic secure quantum communication (DSQC) are two important branches of quantum cryptography.
In the practical scenario, an adversary can apply detector-side-channel attacks to get some non-negligible amount of information about the secret message.
Measurement-device-independent (MDI) quantum protocols can remove this kind of detector-side-channel attack.
- Score: 3.490038106567192
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum secure direct communication (QSDC) and deterministic secure quantum
communication (DSQC) are two important branches of quantum cryptography, where
one can transmit a secret message securely without encrypting it by a prior
key. In the practical scenario, an adversary can apply detector-side-channel
attacks to get some non-negligible amount of information about the secret
message. Measurement-device-independent (MDI) quantum protocols can remove this
kind of detector-side-channel attack, by introducing an untrusted third party
(UTP), who performs all the measurements during the protocol with imperfect
measurement devices. In this paper, we put forward the first MDI-QSDC protocol
with user identity authentication, where both the sender and the receiver first
check the authenticity of the other party and then exchange the secret message.
Then we extend this to an MDI quantum dialogue (QD) protocol, where both the
parties can send their respective secret messages after verifying the identity
of the other party. Along with this, we also report the first MDI-DSQC protocol
with user identity authentication. Theoretical analyses prove the security of
our proposed protocols against common attacks.
Related papers
- Quantum digital signature based on single-qubit without a trusted third-party [45.41082277680607]
We propose a brand new quantum digital signature protocol without a trusted third party only with qubit technology to further improve the security.
We prove that the protocol has information-theoretical unforgeability. Moreover, it satisfies other important secure properties, including asymmetry, undeniability, and expandability.
arXiv Detail & Related papers (2024-10-17T09:49:29Z) - Orthogonal-state-based Measurement Device Independent Quantum Communication [32.244698777387995]
We propose a new protocol of measurement-device-independent quantum secure direct communication and quantum dialogue employing single basis, i.e., Bell basis as decoy qubits for eavesdropping detection.
Our protocols leverage fundamentally distinct resources to close the security loopholes linked to measurement devices, while also effectively doubling the distance for secure direct message transmission.
arXiv Detail & Related papers (2024-09-30T15:57:17Z) - User-Authenticated Device-Independent Quantum Secure Direct Communication Protocol [5.420275467831935]
Device-Independent Quantum Secure Direct Communication (DI-QSDC) enhances quantum cryptography.
We propose the first of its kind DI-QSDC protocol with user identity authentication.
arXiv Detail & Related papers (2024-09-16T16:03:22Z) - One-photon-interference quantum secure direct communication [2.9464311367375755]
Measurement-device-independent (MDI) QSDC protocols can eliminate the security loopholes associated with measurement devices.
We propose a one-photon-interference MDI QSDC protocol which transcends the need for quantum memory, ideal single-photon sources, or entangled light sources.
arXiv Detail & Related papers (2024-04-03T14:51:58Z) - The Evolution of Quantum Secure Direct Communication: On the Road to the
Qinternet [49.8449750761258]
Quantum secure direct communication (QSDC) is provably secure and overcomes the threat of quantum computing.
We will detail the associated point-to-point communication protocols and show how information is protected and transmitted.
arXiv Detail & Related papers (2023-11-23T12:40:47Z) - Practical quantum secure direct communication with squeezed states [55.41644538483948]
We report the first table-top experimental demonstration of a CV-QSDC system and assess its security.
This realization paves the way into future threat-less quantum metropolitan networks, compatible with coexisting advanced wavelength division multiplexing (WDM) systems.
arXiv Detail & Related papers (2023-06-25T19:23:42Z) - Device-Independent Quantum Secure Direct Communication with User Authentication [4.757470449749876]
Device-independent (DI) quantum protocols aim to secure quantum communication independent of the devices used.
We introduce the first DI-QSDC protocol that includes user identity authentication to establish the authenticity of both sender and receiver.
We extend this approach to a DI Quantum Dialogue (QD) protocol where both parties can send secret messages upon mutual authentication.
arXiv Detail & Related papers (2023-04-06T16:25:26Z) - Single-photon-memory measurement-device-independent quantum secure
direct communication [63.75763893884079]
Quantum secure direct communication (QSDC) uses the quantum channel to transmit information reliably and securely.
In order to eliminate the security loopholes resulting from practical detectors, the measurement-device-independent (MDI) QSDC protocol has been proposed.
We propose a single-photon-memory MDI QSDC protocol (SPMQC) for dispensing with high-performance quantum memory.
arXiv Detail & Related papers (2022-12-12T02:23:57Z) - From Auditable Quantum Authentication to Best-of-Both-Worlds Multiparty
Quantum Computation with Public Verifiable Identifiable Abort [0.5076419064097734]
We construct the first secure multiparty quantum computation with public verifiable identifiable abort (MPQC-PVIA) protocol.
MPQC is the first quantum setting to provide Best-of-Both-Worlds (BoBW) security, which attains full security with an honest majority.
arXiv Detail & Related papers (2022-11-03T09:12:48Z) - Measurement-device-independent QSDC protocol using Bell and GHZ states
on quantum simulator [0.0]
Quantum Secure Direct Communication (QSDC) protocol eliminates the necessity of key, encryption and ciphertext transmission.
It is a unique quantum communication scheme where secret information is transmitted directly over a quantum communication channel.
We make use of measurement-device-independent (MDI) protocol in this scheme where all the measurements of quantum states during communication are performed by a third party.
arXiv Detail & Related papers (2020-07-01T07:47:59Z) - Single-Shot Secure Quantum Network Coding for General Multiple Unicast
Network with Free One-Way Public Communication [56.678354403278206]
We propose a canonical method to derive a secure quantum network code over a multiple unicast quantum network.
Our code correctly transmits quantum states when there is no attack.
It also guarantees the secrecy of the transmitted quantum state even with the existence of an attack.
arXiv Detail & Related papers (2020-03-30T09:25:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.