A duality connecting neural network and cosmological dynamics
- URL: http://arxiv.org/abs/2202.11104v1
- Date: Tue, 22 Feb 2022 19:00:01 GMT
- Title: A duality connecting neural network and cosmological dynamics
- Authors: Sven Krippendorf, Michael Spannowsky
- Abstract summary: We show that the dynamics of neural networks trained with gradient descent and the dynamics of scalar fields in a flat, vacuum energy dominated Universe are structurally related.
This duality provides the framework for synergies between these systems, to understand and explain neural network dynamics.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We demonstrate that the dynamics of neural networks trained with gradient
descent and the dynamics of scalar fields in a flat, vacuum energy dominated
Universe are structurally profoundly related. This duality provides the
framework for synergies between these systems, to understand and explain neural
network dynamics and new ways of simulating and describing early Universe
models. Working in the continuous-time limit of neural networks, we
analytically match the dynamics of the mean background and the dynamics of
small perturbations around the mean field, highlighting potential differences
in separate limits. We perform empirical tests of this analytic description and
quantitatively show the dependence of the effective field theory parameters on
hyperparameters of the neural network. As a result of this duality, the
cosmological constant is matched inversely to the learning rate in the gradient
descent update.
Related papers
- Artificial Kuramoto Oscillatory Neurons [65.16453738828672]
We introduce Artificial Kuramotoy Neurons (AKOrN) as a dynamical alternative to threshold units.
We show that this idea provides performance improvements across a wide spectrum of tasks.
We believe that these empirical results show the importance of our assumptions at the most basic neuronal level of neural representation.
arXiv Detail & Related papers (2024-10-17T17:47:54Z) - Synergistic pathways of modulation enable robust task packing within neural dynamics [0.0]
We use recurrent network models to probe the distinctions between two forms of contextual modulation of neural dynamics.
We demonstrate distinction between these mechanisms at the level of the neuronal dynamics they induce.
These characterizations indicate complementarity and synergy in how these mechanisms act, potentially over multiple time-scales.
arXiv Detail & Related papers (2024-08-02T15:12:01Z) - Exploiting Chaotic Dynamics as Deep Neural Networks [1.9282110216621833]
We show that the essence of chaos can be found in various state-of-the-art deep neural networks.
Our framework presents superior results in terms of accuracy, convergence speed, and efficiency.
This study offers a new path for the integration of chaos, which has long been overlooked in information processing.
arXiv Detail & Related papers (2024-05-29T22:03:23Z) - Exploring neural oscillations during speech perception via surrogate gradient spiking neural networks [59.38765771221084]
We present a physiologically inspired speech recognition architecture compatible and scalable with deep learning frameworks.
We show end-to-end gradient descent training leads to the emergence of neural oscillations in the central spiking neural network.
Our findings highlight the crucial inhibitory role of feedback mechanisms, such as spike frequency adaptation and recurrent connections, in regulating and synchronising neural activity to improve recognition performance.
arXiv Detail & Related papers (2024-04-22T09:40:07Z) - Probing Biological and Artificial Neural Networks with Task-dependent
Neural Manifolds [12.037840490243603]
We investigate the internal mechanisms of neural networks through the lens of neural population geometry.
We quantitatively characterize how different learning objectives lead to differences in the organizational strategies of these models.
These analyses present a strong direction for bridging mechanistic and normative theories in neural networks through neural population geometry.
arXiv Detail & Related papers (2023-12-21T20:40:51Z) - SEGNO: Generalizing Equivariant Graph Neural Networks with Physical
Inductive Biases [66.61789780666727]
We show how the second-order continuity can be incorporated into GNNs while maintaining the equivariant property.
We also offer theoretical insights into SEGNO, highlighting that it can learn a unique trajectory between adjacent states.
Our model yields a significant improvement over the state-of-the-art baselines.
arXiv Detail & Related papers (2023-08-25T07:15:58Z) - Interpretable statistical representations of neural population dynamics and geometry [4.459704414303749]
We introduce a representation learning method, MARBLE, that decomposes on-manifold dynamics into local flow fields and maps them into a common latent space.
In simulated non-linear dynamical systems, recurrent neural networks, and experimental single-neuron recordings from primates and rodents, we discover emergent low-dimensional latent representations.
These representations are consistent across neural networks and animals, enabling the robust comparison of cognitive computations.
arXiv Detail & Related papers (2023-04-06T21:11:04Z) - A Functional-Space Mean-Field Theory of Partially-Trained Three-Layer
Neural Networks [49.870593940818715]
We study the infinite-width limit of a type of three-layer NN model whose first layer is random and fixed.
Our theory accommodates different scaling choices of the model, resulting in two regimes of the MF limit that demonstrate distinctive behaviors.
arXiv Detail & Related papers (2022-10-28T17:26:27Z) - Convex Analysis of the Mean Field Langevin Dynamics [49.66486092259375]
convergence rate analysis of the mean field Langevin dynamics is presented.
$p_q$ associated with the dynamics allows us to develop a convergence theory parallel to classical results in convex optimization.
arXiv Detail & Related papers (2022-01-25T17:13:56Z) - An Ode to an ODE [78.97367880223254]
We present a new paradigm for Neural ODE algorithms, called ODEtoODE, where time-dependent parameters of the main flow evolve according to a matrix flow on the group O(d)
This nested system of two flows provides stability and effectiveness of training and provably solves the gradient vanishing-explosion problem.
arXiv Detail & Related papers (2020-06-19T22:05:19Z) - Complexity for deep neural networks and other characteristics of deep
feature representations [0.0]
We define a notion of complexity, which quantifies the nonlinearity of the computation of a neural network.
We investigate these observables both for trained networks as well as explore their dynamics during training.
arXiv Detail & Related papers (2020-06-08T17:59:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.