Robust Hierarchical Patterns for identifying MDD patients: A Multisite
Study
- URL: http://arxiv.org/abs/2202.11144v1
- Date: Tue, 22 Feb 2022 19:40:32 GMT
- Title: Robust Hierarchical Patterns for identifying MDD patients: A Multisite
Study
- Authors: Dushyant Sahoo, Mathilde Antoniades, Cynthia H.Y. Fu, and Christos
Davatzikos
- Abstract summary: We look at hierarchical Sparse Connectivity Patterns (h SCPs) as biomarkers for major depressive disorder (MDD)
We propose a novel model based on h SCPs to predict MDD patients from functional connectivity matrices extracted from resting-state fMRI data.
Our results show the impact of diversity on prediction performance. Our model can reduce diversity and improve the predictive and generalizing capability of the components.
- Score: 3.4561220135252264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many supervised machine learning frameworks have been proposed for disease
classification using functional magnetic resonance imaging (fMRI) data,
producing important biomarkers. More recently, data pooling has flourished,
making the result generalizable across a large population. But, this success
depends on the population diversity and variability introduced due to the
pooling of the data that is not a primary research interest. Here, we look at
hierarchical Sparse Connectivity Patterns (hSCPs) as biomarkers for major
depressive disorder (MDD). We propose a novel model based on hSCPs to predict
MDD patients from functional connectivity matrices extracted from resting-state
fMRI data. Our model consists of three coupled terms. The first term decomposes
connectivity matrices into hierarchical low-rank sparse components
corresponding to synchronous patterns across the human brain. These components
are then combined via patient-specific weights capturing heterogeneity in the
data. The second term is a classification loss that uses the patient-specific
weights to classify MDD patients from healthy ones. Both of these terms are
combined with the third term, a robustness loss function to improve the
reproducibility of hSCPs. This reduces the variability introduced due to site
and population diversity (age and sex) on the predictive accuracy and pattern
stability in a large dataset pooled from five different sites. Our results show
the impact of diversity on prediction performance. Our model can reduce
diversity and improve the predictive and generalizing capability of the
components. Finally, our results show that our proposed model can robustly
identify clinically relevant patterns characteristic of MDD with high
reproducibility.
Related papers
- GAMMA-PD: Graph-based Analysis of Multi-Modal Motor Impairment Assessments in Parkinson's Disease [9.69595196614787]
This paper proposes GAMMA-PD, a novel heterogeneous hypergraph fusion framework for multi-modal clinical data analysis.
GAMMA-PD integrates imaging and non-imaging data into a "hypernetwork" (patient population graph) by preserving higher-order information.
We demonstrate gains in predicting motor impairment symptoms in Parkinson's disease.
arXiv Detail & Related papers (2024-10-01T15:51:33Z) - GFE-Mamba: Mamba-based AD Multi-modal Progression Assessment via Generative Feature Extraction from MCI [5.355943545567233]
Alzheimer's Disease (AD) is an irreversible neurodegenerative disorder that often progresses from Mild Cognitive Impairment (MCI)
We introduce GFE-Mamba, a classifier based on Generative Feature Extraction (GFE)
It integrates data from assessment scales, MRI, and PET, enabling deeper multimodal fusion.
Our experimental results demonstrate that the GFE-Mamba model is effective in predicting the conversion from MCI to AD.
arXiv Detail & Related papers (2024-07-22T15:22:33Z) - A Demographic-Conditioned Variational Autoencoder for fMRI Distribution Sampling and Removal of Confounds [49.34500499203579]
We create a variational autoencoder (VAE)-based model, DemoVAE, to decorrelate fMRI features from demographics.
We generate high-quality synthetic fMRI data based on user-supplied demographics.
arXiv Detail & Related papers (2024-05-13T17:49:20Z) - The effect of data augmentation and 3D-CNN depth on Alzheimer's Disease
detection [51.697248252191265]
This work summarizes and strictly observes best practices regarding data handling, experimental design, and model evaluation.
We focus on Alzheimer's Disease (AD) detection, which serves as a paradigmatic example of challenging problem in healthcare.
Within this framework, we train predictive 15 models, considering three different data augmentation strategies and five distinct 3D CNN architectures.
arXiv Detail & Related papers (2023-09-13T10:40:41Z) - PheME: A deep ensemble framework for improving phenotype prediction from
multi-modal data [42.56953523499849]
We present PheME, an Ensemble framework using Multi-modality data of structured EHRs and unstructured clinical notes for accurate Phenotype prediction.
We leverage ensemble learning to combine outputs from single-modal models and multi-modal models to improve phenotype predictions.
arXiv Detail & Related papers (2023-03-19T23:41:04Z) - Bayesian Networks for the robust and unbiased prediction of depression
and its symptoms utilizing speech and multimodal data [65.28160163774274]
We apply a Bayesian framework to capture the relationships between depression, depression symptoms, and features derived from speech, facial expression and cognitive game data collected at thymia.
arXiv Detail & Related papers (2022-11-09T14:48:13Z) - Feature robustness and sex differences in medical imaging: a case study
in MRI-based Alzheimer's disease detection [1.7616042687330637]
We compare two classification schemes on the ADNI MRI dataset.
We do not find a strong dependence of model performance for male and female test subjects on the sex composition of the training dataset.
arXiv Detail & Related papers (2022-04-04T17:37:54Z) - Bootstrapping Your Own Positive Sample: Contrastive Learning With
Electronic Health Record Data [62.29031007761901]
This paper proposes a novel contrastive regularized clinical classification model.
We introduce two unique positive sampling strategies specifically tailored for EHR data.
Our framework yields highly competitive experimental results in predicting the mortality risk on real-world COVID-19 EHR data.
arXiv Detail & Related papers (2021-04-07T06:02:04Z) - G-MIND: An End-to-End Multimodal Imaging-Genetics Framework for
Biomarker Identification and Disease Classification [49.53651166356737]
We propose a novel deep neural network architecture to integrate imaging and genetics data, as guided by diagnosis, that provides interpretable biomarkers.
We have evaluated our model on a population study of schizophrenia that includes two functional MRI (fMRI) paradigms and Single Nucleotide Polymorphism (SNP) data.
arXiv Detail & Related papers (2021-01-27T19:28:04Z) - A Joint Network Optimization Framework to Predict Clinical Severity from
Resting State Functional MRI Data [5.774786149181392]
We propose a novel framework to predict clinical severity from resting state fMRI (rs-fMRI) data.
We validate our framework on two separate datasets in a ten fold cross validation setting.
arXiv Detail & Related papers (2020-08-27T23:43:25Z) - M2Net: Multi-modal Multi-channel Network for Overall Survival Time
Prediction of Brain Tumor Patients [151.4352001822956]
Early and accurate prediction of overall survival (OS) time can help to obtain better treatment planning for brain tumor patients.
Existing prediction methods rely on radiomic features at the local lesion area of a magnetic resonance (MR) volume.
We propose an end-to-end OS time prediction model; namely, Multi-modal Multi-channel Network (M2Net)
arXiv Detail & Related papers (2020-06-01T05:21:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.