DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association
- URL: http://arxiv.org/abs/2202.12100v1
- Date: Thu, 24 Feb 2022 13:36:29 GMT
- Title: DeepFusionMOT: A 3D Multi-Object Tracking Framework Based on
Camera-LiDAR Fusion with Deep Association
- Authors: Xiyang Wang, Chunyun Fu, Zhankun Li, Ying Lai, Jiawei He
- Abstract summary: This paper proposes a robust camera-LiDAR fusion-based MOT method that achieves a good trade-off between accuracy and speed.
Our proposed method presents obvious advantages over the state-of-the-art MOT methods in terms of both tracking accuracy and processing speed.
- Score: 8.34219107351442
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the recent literature, on the one hand, many 3D multi-object tracking
(MOT) works have focused on tracking accuracy and neglected computation speed,
commonly by designing rather complex cost functions and feature extractors. On
the other hand, some methods have focused too much on computation speed at the
expense of tracking accuracy. In view of these issues, this paper proposes a
robust and fast camera-LiDAR fusion-based MOT method that achieves a good
trade-off between accuracy and speed. Relying on the characteristics of camera
and LiDAR sensors, an effective deep association mechanism is designed and
embedded in the proposed MOT method. This association mechanism realizes
tracking of an object in a 2D domain when the object is far away and only
detected by the camera, and updating of the 2D trajectory with 3D information
obtained when the object appears in the LiDAR field of view to achieve a smooth
fusion of 2D and 3D trajectories. Extensive experiments based on the KITTI
dataset indicate that our proposed method presents obvious advantages over the
state-of-the-art MOT methods in terms of both tracking accuracy and processing
speed. Our code is made publicly available for the benefit of the community
Related papers
- ShaSTA-Fuse: Camera-LiDAR Sensor Fusion to Model Shape and
Spatio-Temporal Affinities for 3D Multi-Object Tracking [26.976216624424385]
3D multi-object tracking (MOT) is essential for an autonomous mobile agent to safely navigate a scene.
We aim to develop a 3D MOT framework that fuses camera and LiDAR sensor information.
arXiv Detail & Related papers (2023-10-04T02:17:59Z) - CAMO-MOT: Combined Appearance-Motion Optimization for 3D Multi-Object
Tracking with Camera-LiDAR Fusion [34.42289908350286]
3D Multi-object tracking (MOT) ensures consistency during continuous dynamic detection.
It can be challenging to accurately track the irregular motion of objects for LiDAR-based methods.
We propose a novel camera-LiDAR fusion 3D MOT framework based on the Combined Appearance-Motion Optimization (CAMO-MOT)
arXiv Detail & Related papers (2022-09-06T14:41:38Z) - Benchmarking the Robustness of LiDAR-Camera Fusion for 3D Object
Detection [58.81316192862618]
Two critical sensors for 3D perception in autonomous driving are the camera and the LiDAR.
fusing these two modalities can significantly boost the performance of 3D perception models.
We benchmark the state-of-the-art fusion methods for the first time.
arXiv Detail & Related papers (2022-05-30T09:35:37Z) - A Lightweight and Detector-free 3D Single Object Tracker on Point Clouds [50.54083964183614]
It is non-trivial to perform accurate target-specific detection since the point cloud of objects in raw LiDAR scans is usually sparse and incomplete.
We propose DMT, a Detector-free Motion prediction based 3D Tracking network that totally removes the usage of complicated 3D detectors.
arXiv Detail & Related papers (2022-03-08T17:49:07Z) - Joint Multi-Object Detection and Tracking with Camera-LiDAR Fusion for
Autonomous Driving [6.396288020763144]
Multi-object tracking (MOT) with camera-LiDAR fusion demands accurate results of object detection, affinity computation and data association in real time.
This paper presents an efficient multi-modal MOT framework with online joint detection and tracking schemes and robust data association for autonomous driving applications.
arXiv Detail & Related papers (2021-08-10T11:17:05Z) - CFTrack: Center-based Radar and Camera Fusion for 3D Multi-Object
Tracking [9.62721286522053]
We propose an end-to-end network for joint object detection and tracking based on radar and camera sensor fusion.
Our proposed method uses a center-based radar-camera fusion algorithm for object detection and utilizes a greedy algorithm for object association.
We evaluate our method on the challenging nuScenes dataset, where it achieves 20.0 AMOTA and outperforms all vision-based 3D tracking methods in the benchmark.
arXiv Detail & Related papers (2021-07-11T23:56:53Z) - EagerMOT: 3D Multi-Object Tracking via Sensor Fusion [68.8204255655161]
Multi-object tracking (MOT) enables mobile robots to perform well-informed motion planning and navigation by localizing surrounding objects in 3D space and time.
Existing methods rely on depth sensors (e.g., LiDAR) to detect and track targets in 3D space, but only up to a limited sensing range due to the sparsity of the signal.
We propose EagerMOT, a simple tracking formulation that integrates all available object observations from both sensor modalities to obtain a well-informed interpretation of the scene dynamics.
arXiv Detail & Related papers (2021-04-29T22:30:29Z) - M3DSSD: Monocular 3D Single Stage Object Detector [82.25793227026443]
We propose a Monocular 3D Single Stage object Detector (M3DSSD) with feature alignment and asymmetric non-local attention.
The proposed M3DSSD achieves significantly better performance than the monocular 3D object detection methods on the KITTI dataset.
arXiv Detail & Related papers (2021-03-24T13:09:11Z) - Monocular Quasi-Dense 3D Object Tracking [99.51683944057191]
A reliable and accurate 3D tracking framework is essential for predicting future locations of surrounding objects and planning the observer's actions in numerous applications such as autonomous driving.
We propose a framework that can effectively associate moving objects over time and estimate their full 3D bounding box information from a sequence of 2D images captured on a moving platform.
arXiv Detail & Related papers (2021-03-12T15:30:02Z) - PLUME: Efficient 3D Object Detection from Stereo Images [95.31278688164646]
Existing methods tackle the problem in two steps: first depth estimation is performed, a pseudo LiDAR point cloud representation is computed from the depth estimates, and then object detection is performed in 3D space.
We propose a model that unifies these two tasks in the same metric space.
Our approach achieves state-of-the-art performance on the challenging KITTI benchmark, with significantly reduced inference time compared with existing methods.
arXiv Detail & Related papers (2021-01-17T05:11:38Z) - Relation3DMOT: Exploiting Deep Affinity for 3D Multi-Object Tracking
from View Aggregation [8.854112907350624]
3D multi-object tracking plays a vital role in autonomous navigation.
Many approaches detect objects in 2D RGB sequences for tracking, which is lack of reliability when localizing objects in 3D space.
We propose a novel convolutional operation, named RelationConv, to better exploit the correlation between each pair of objects in the adjacent frames.
arXiv Detail & Related papers (2020-11-25T16:14:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.