An Information-theoretical Approach to Semi-supervised Learning under
Covariate-shift
- URL: http://arxiv.org/abs/2202.12123v1
- Date: Thu, 24 Feb 2022 14:25:14 GMT
- Title: An Information-theoretical Approach to Semi-supervised Learning under
Covariate-shift
- Authors: Gholamali Aminian, Mahed Abroshan, Mohammad Mahdi Khalili, Laura Toni,
Miguel R. D. Rodrigues
- Abstract summary: A common assumption in semi-supervised learning is that the labeled, unlabeled, and test data are drawn from the same distribution.
We propose an approach for semi-supervised learning algorithms that is capable of addressing this issue.
Our framework also recovers some popular methods, including entropy minimization and pseudo-labeling.
- Score: 24.061858945664856
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A common assumption in semi-supervised learning is that the labeled,
unlabeled, and test data are drawn from the same distribution. However, this
assumption is not satisfied in many applications. In many scenarios, the data
is collected sequentially (e.g., healthcare) and the distribution of the data
may change over time often exhibiting so-called covariate shifts. In this
paper, we propose an approach for semi-supervised learning algorithms that is
capable of addressing this issue. Our framework also recovers some popular
methods, including entropy minimization and pseudo-labeling. We provide new
information-theoretical based generalization error upper bounds inspired by our
novel framework. Our bounds are applicable to both general semi-supervised
learning and the covariate-shift scenario. Finally, we show numerically that
our method outperforms previous approaches proposed for semi-supervised
learning under the covariate shift.
Related papers
- Transformation-Invariant Learning and Theoretical Guarantees for OOD Generalization [34.036655200677664]
This paper focuses on a distribution shift setting where train and test distributions can be related by classes of (data) transformation maps.
We establish learning rules and algorithmic reductions to Empirical Risk Minimization (ERM)
We highlight that the learning rules we derive offer a game-theoretic viewpoint on distribution shift.
arXiv Detail & Related papers (2024-10-30T20:59:57Z) - Learning with Complementary Labels Revisited: The Selected-Completely-at-Random Setting Is More Practical [66.57396042747706]
Complementary-label learning is a weakly supervised learning problem.
We propose a consistent approach that does not rely on the uniform distribution assumption.
We find that complementary-label learning can be expressed as a set of negative-unlabeled binary classification problems.
arXiv Detail & Related papers (2023-11-27T02:59:17Z) - A Unified Generalization Analysis of Re-Weighting and Logit-Adjustment
for Imbalanced Learning [129.63326990812234]
We propose a technique named data-dependent contraction to capture how modified losses handle different classes.
On top of this technique, a fine-grained generalization bound is established for imbalanced learning, which helps reveal the mystery of re-weighting and logit-adjustment.
arXiv Detail & Related papers (2023-10-07T09:15:08Z) - MaxMatch: Semi-Supervised Learning with Worst-Case Consistency [149.03760479533855]
We propose a worst-case consistency regularization technique for semi-supervised learning (SSL)
We present a generalization bound for SSL consisting of the empirical loss terms observed on labeled and unlabeled training data separately.
Motivated by this bound, we derive an SSL objective that minimizes the largest inconsistency between an original unlabeled sample and its multiple augmented variants.
arXiv Detail & Related papers (2022-09-26T12:04:49Z) - Revisiting Deep Semi-supervised Learning: An Empirical Distribution
Alignment Framework and Its Generalization Bound [97.93945601881407]
We propose a new deep semi-supervised learning framework called Semi-supervised Learning by Empirical Distribution Alignment (SLEDA)
We show the generalization error of semi-supervised learning can be effectively bounded by minimizing the training error on labeled data.
Building upon our new framework and the theoretical bound, we develop a simple and effective deep semi-supervised learning method called Augmented Distribution Alignment Network (ADA-Net)
arXiv Detail & Related papers (2022-03-13T11:59:52Z) - OoD-Bench: Benchmarking and Understanding Out-of-Distribution
Generalization Datasets and Algorithms [28.37021464780398]
We show that existing OoD algorithms that outperform empirical risk minimization on one distribution shift usually have limitations on the other distribution shift.
The new benchmark may serve as a strong foothold that can be resorted to by future OoD generalization research.
arXiv Detail & Related papers (2021-06-07T15:34:36Z) - Learning Invariant Representations and Risks for Semi-supervised Domain
Adaptation [109.73983088432364]
We propose the first method that aims to simultaneously learn invariant representations and risks under the setting of semi-supervised domain adaptation (Semi-DA)
We introduce the LIRR algorithm for jointly textbfLearning textbfInvariant textbfRepresentations and textbfRisks.
arXiv Detail & Related papers (2020-10-09T15:42:35Z) - A One-step Approach to Covariate Shift Adaptation [82.01909503235385]
A default assumption in many machine learning scenarios is that the training and test samples are drawn from the same probability distribution.
We propose a novel one-step approach that jointly learns the predictive model and the associated weights in one optimization.
arXiv Detail & Related papers (2020-07-08T11:35:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.