Learning Stochastic Dynamics with Statistics-Informed Neural Network
- URL: http://arxiv.org/abs/2202.12278v1
- Date: Thu, 24 Feb 2022 18:21:01 GMT
- Title: Learning Stochastic Dynamics with Statistics-Informed Neural Network
- Authors: Yuanran Zhu, Yu-Hang Tang, Changho Kim
- Abstract summary: We introduce a machine-learning framework named statistics-informed neural network (SINN) for learning dynamics from data.
We devise mechanisms for training the neural network model to reproduce the correct emphstatistical behavior of a target process.
We show that the obtained reduced-order model can be trained on temporally coarse-grained data and hence is well suited for rare-event simulations.
- Score: 0.4297070083645049
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a machine-learning framework named statistics-informed neural
network (SINN) for learning stochastic dynamics from data. This new
architecture was theoretically inspired by a universal approximation theorem
for stochastic systems introduced in this paper and the projection-operator
formalism for stochastic modeling. We devise mechanisms for training the neural
network model to reproduce the correct \emph{statistical} behavior of a target
stochastic process. Numerical simulation results demonstrate that a
well-trained SINN can reliably approximate both Markovian and non-Markovian
stochastic dynamics. We demonstrate the applicability of SINN to model
transition dynamics. Furthermore, we show that the obtained reduced-order model
can be trained on temporally coarse-grained data and hence is well suited for
rare-event simulations.
Related papers
- Inferring stochastic low-rank recurrent neural networks from neural data [5.179844449042386]
A central aim in computational neuroscience is to relate the activity of large neurons to an underlying dynamical system.
Low-rank recurrent neural networks (RNNs) exhibit such interpretability by having tractable dynamics.
Here, we propose to fit low-rank RNNs with variational sequential Monte Carlo methods.
arXiv Detail & Related papers (2024-06-24T15:57:49Z) - Enhancing lattice kinetic schemes for fluid dynamics with Lattice-Equivariant Neural Networks [79.16635054977068]
We present a new class of equivariant neural networks, dubbed Lattice-Equivariant Neural Networks (LENNs)
Our approach develops within a recently introduced framework aimed at learning neural network-based surrogate models Lattice Boltzmann collision operators.
Our work opens towards practical utilization of machine learning-augmented Lattice Boltzmann CFD in real-world simulations.
arXiv Detail & Related papers (2024-05-22T17:23:15Z) - How Inverse Conditional Flows Can Serve as a Substitute for Distributional Regression [2.9873759776815527]
We propose a framework for distributional regression using inverse flow transformations (DRIFT)
DRIFT covers both interpretable statistical models and flexible neural networks opening up new avenues in both statistical modeling and deep learning.
arXiv Detail & Related papers (2024-05-08T21:19:18Z) - Equivariant Neural Simulators for Stochastic Spatiotemporal Dynamics [3.909855210960908]
Equi Probabilistic Neural Simulation (EPNS) is a framework for autoregressive modeling of equivariant distributions over system evolutions.
EPNS considerably outperforms existing neural network-based methods for probabilistic simulation.
arXiv Detail & Related papers (2023-05-23T17:30:10Z) - Capturing dynamical correlations using implicit neural representations [85.66456606776552]
We develop an artificial intelligence framework which combines a neural network trained to mimic simulated data from a model Hamiltonian with automatic differentiation to recover unknown parameters from experimental data.
In doing so, we illustrate the ability to build and train a differentiable model only once, which then can be applied in real-time to multi-dimensional scattering data.
arXiv Detail & Related papers (2023-04-08T07:55:36Z) - ConCerNet: A Contrastive Learning Based Framework for Automated
Conservation Law Discovery and Trustworthy Dynamical System Prediction [82.81767856234956]
This paper proposes a new learning framework named ConCerNet to improve the trustworthiness of the DNN based dynamics modeling.
We show that our method consistently outperforms the baseline neural networks in both coordinate error and conservation metrics.
arXiv Detail & Related papers (2023-02-11T21:07:30Z) - EINNs: Epidemiologically-Informed Neural Networks [75.34199997857341]
We introduce a new class of physics-informed neural networks-EINN-crafted for epidemic forecasting.
We investigate how to leverage both the theoretical flexibility provided by mechanistic models as well as the data-driven expressability afforded by AI models.
arXiv Detail & Related papers (2022-02-21T18:59:03Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Sparse Flows: Pruning Continuous-depth Models [107.98191032466544]
We show that pruning improves generalization for neural ODEs in generative modeling.
We also show that pruning finds minimal and efficient neural ODE representations with up to 98% less parameters compared to the original network, without loss of accuracy.
arXiv Detail & Related papers (2021-06-24T01:40:17Z) - Learning Queuing Networks by Recurrent Neural Networks [0.0]
We propose a machine-learning approach to derive performance models from data.
We exploit a deterministic approximation of their average dynamics in terms of a compact system of ordinary differential equations.
This allows for an interpretable structure of the neural network, which can be trained from system measurements to yield a white-box parameterized model.
arXiv Detail & Related papers (2020-02-25T10:56:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.