Improved Dual Correlation Reduction Network
- URL: http://arxiv.org/abs/2202.12533v1
- Date: Fri, 25 Feb 2022 07:48:32 GMT
- Title: Improved Dual Correlation Reduction Network
- Authors: Yue Liu, Sihang Zhou, Xinwang Liu, Wenxuan Tu, Xihong Yang
- Abstract summary: We propose a novel deep graph clustering algorithm termed Improved Dual Correlation Reduction Network (IDCRN)
By approximating the cross-view feature correlation matrix to an identity matrix, we reduce the redundancy between different dimensions of features.
We also avoid the collapsed representation caused by the over-smoothing issue in Graph Convolutional Networks (GCNs) through an introduced propagation regularization term.
- Score: 40.792587861237166
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep graph clustering, which aims to reveal the underlying graph structure
and divide the nodes into different clusters without human annotations, is a
fundamental yet challenging task. However, we observed that the existing
methods suffer from the representation collapse problem and easily tend to
encode samples with different classes into the same latent embedding.
Consequently, the discriminative capability of nodes is limited, resulting in
sub-optimal clustering performance. To address this problem, we propose a novel
deep graph clustering algorithm termed Improved Dual Correlation Reduction
Network (IDCRN) through improving the discriminative capability of samples.
Specifically, by approximating the cross-view feature correlation matrix to an
identity matrix, we reduce the redundancy between different dimensions of
features, thus improving the discriminative capability of the latent space
explicitly. Meanwhile, the cross-view sample correlation matrix is forced to
approximate the designed clustering-refined adjacency matrix to guide the
learned latent representation to recover the affinity matrix even across views,
thus enhancing the discriminative capability of features implicitly. Moreover,
we avoid the collapsed representation caused by the over-smoothing issue in
Graph Convolutional Networks (GCNs) through an introduced propagation
regularization term, enabling IDCRN to capture the long-range information with
the shallow network structure. Extensive experimental results on six benchmarks
have demonstrated the effectiveness and the efficiency of IDCRN compared to the
existing state-of-the-art deep graph clustering algorithms.
Related papers
- AdaRC: Mitigating Graph Structure Shifts during Test-Time [66.40525136929398]
Test-time adaptation (TTA) has attracted attention due to its ability to adapt a pre-trained model to a target domain without re-accessing the source domain.
We propose AdaRC, an innovative framework designed for effective and efficient adaptation to structure shifts in graphs.
arXiv Detail & Related papers (2024-10-09T15:15:40Z) - GASE: Graph Attention Sampling with Edges Fusion for Solving Vehicle Routing Problems [6.084414764415137]
We propose an adaptive Graph Attention Sampling with the Edges Fusion framework to solve vehicle routing problems.
Our proposed model outperforms the existing methods by 2.08%-6.23% and shows stronger generalization ability.
arXiv Detail & Related papers (2024-05-21T03:33:07Z) - Deep Contrastive Graph Learning with Clustering-Oriented Guidance [61.103996105756394]
Graph Convolutional Network (GCN) has exhibited remarkable potential in improving graph-based clustering.
Models estimate an initial graph beforehand to apply GCN.
Deep Contrastive Graph Learning (DCGL) model is proposed for general data clustering.
arXiv Detail & Related papers (2024-02-25T07:03:37Z) - Efficient Bilateral Cross-Modality Cluster Matching for Unsupervised Visible-Infrared Person ReID [56.573905143954015]
We propose a novel bilateral cluster matching-based learning framework to reduce the modality gap by matching cross-modality clusters.
Under such a supervisory signal, a Modality-Specific and Modality-Agnostic (MSMA) contrastive learning framework is proposed to align features jointly at a cluster-level.
Experiments on the public SYSU-MM01 and RegDB datasets demonstrate the effectiveness of the proposed method.
arXiv Detail & Related papers (2023-05-22T03:27:46Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Simple Contrastive Graph Clustering [41.396185271303956]
We propose a Simple Contrastive Graph Clustering (SCGC) algorithm to improve the existing methods.
Our algorithm outperforms the recent contrastive deep clustering competitors with at least seven times speedup on average.
arXiv Detail & Related papers (2022-05-11T06:45:19Z) - Deep Graph Clustering via Dual Correlation Reduction [37.973072977988494]
We propose a novel self-supervised deep graph clustering method termed Dual Correlation Reduction Network (DCRN)
In our method, we first design a siamese network to encode samples. Then by forcing the cross-view sample correlation matrix and cross-view feature correlation matrix to approximate two identity matrices, respectively, we reduce the information correlation in the dual-level.
In order to alleviate representation collapse caused by over-smoothing in GCN, we introduce a propagation regularization term to enable the network to gain long-distance information.
arXiv Detail & Related papers (2021-12-29T04:05:38Z) - Image Clustering using an Augmented Generative Adversarial Network and
Information Maximization [9.614694312155798]
We propose a deep clustering framework consisting of a modified generative adversarial network (GAN) and an auxiliary classifier.
The proposed method significantly outperforms state-of-the-art clustering methods on CIFAR-10 and CIFAR-100, and is competitive on the STL10 and MNIST datasets.
arXiv Detail & Related papers (2020-11-08T22:20:33Z) - Learning to Cluster Faces via Confidence and Connectivity Estimation [136.5291151775236]
We propose a fully learnable clustering framework without requiring a large number of overlapped subgraphs.
Our method significantly improves clustering accuracy and thus performance of the recognition models trained on top, yet it is an order of magnitude more efficient than existing supervised methods.
arXiv Detail & Related papers (2020-04-01T13:39:37Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.