Exploratory Hidden Markov Factor Models for Longitudinal Mobile Health
Data: Application to Adverse Posttraumatic Neuropsychiatric Sequelae
- URL: http://arxiv.org/abs/2202.12819v2
- Date: Mon, 5 Jun 2023 00:10:17 GMT
- Title: Exploratory Hidden Markov Factor Models for Longitudinal Mobile Health
Data: Application to Adverse Posttraumatic Neuropsychiatric Sequelae
- Authors: Lin Ge, Xinming An, Donglin Zeng, Samuel McLean, Ronald Kessler, and
Rui Song
- Abstract summary: Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among veterans and millions of Americans after traumatic exposures.
Despite numerous studies conducted on APNS over the past decades, there has been limited progress in understanding the underlying neurobiological mechanisms.
- Score: 6.0431675579125415
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Adverse posttraumatic neuropsychiatric sequelae (APNS) are common among
veterans and millions of Americans after traumatic exposures, resulting in
substantial burdens for trauma survivors and society. Despite numerous studies
conducted on APNS over the past decades, there has been limited progress in
understanding the underlying neurobiological mechanisms due to several unique
challenges. One of these challenges is the reliance on subjective self-report
measures to assess APNS, which can easily result in measurement errors and
biases (e.g., recall bias). To mitigate this issue, in this paper, we
investigate the potential of leveraging the objective longitudinal mobile
device data to identify homogeneous APNS states and study the dynamic
transitions and potential risk factors of APNS after trauma exposure. To handle
specific challenges posed by longitudinal mobile device data, we developed
exploratory hidden Markov factor models and designed a Stabilized
Expectation-Maximization algorithm for parameter estimation. Simulation studies
were conducted to evaluate the performance of parameter estimation and model
selection. Finally, to demonstrate the practical utility of the method, we
applied it to mobile device data collected from the Advancing Understanding of
RecOvery afteR traumA (AURORA) study.
Related papers
- Discovering robust biomarkers of neurological disorders from functional MRI using graph neural networks: A Review [4.799269666410891]
We provide an overview of how GNN and model explainability techniques have been applied on fMRI datasets for disorder prediction tasks.
We find that while most studies have performant models, salient features highlighted in these studies vary greatly across studies on the same disorder.
We suggest establishing new standards that are based on objective evaluation metrics to determine the robustness of these potential biomarkers.
arXiv Detail & Related papers (2024-05-01T15:29:55Z) - Recent Advances in Predictive Modeling with Electronic Health Records [71.19967863320647]
utilizing EHR data for predictive modeling presents several challenges due to its unique characteristics.
Deep learning has demonstrated its superiority in various applications, including healthcare.
arXiv Detail & Related papers (2024-02-02T00:31:01Z) - MedDiffusion: Boosting Health Risk Prediction via Diffusion-based Data
Augmentation [58.93221876843639]
This paper introduces a novel, end-to-end diffusion-based risk prediction model, named MedDiffusion.
It enhances risk prediction performance by creating synthetic patient data during training to enlarge sample space.
It discerns hidden relationships between patient visits using a step-wise attention mechanism, enabling the model to automatically retain the most vital information for generating high-quality data.
arXiv Detail & Related papers (2023-10-04T01:36:30Z) - Simulation-based Inference for Cardiovascular Models [57.92535897767929]
We use simulation-based inference to solve the inverse problem of mapping waveforms back to plausible physiological parameters.
We perform an in-silico uncertainty analysis of five biomarkers of clinical interest.
We study the gap between in-vivo and in-silico with the MIMIC-III waveform database.
arXiv Detail & Related papers (2023-07-26T02:34:57Z) - Explainable AI and Machine Learning Towards Human Gait Deterioration
Analysis [0.0]
We objectively analyze gait data and associate findings with clinically relevant biomarkers.
We achieve classification accuracies of 98% F1 sc ores for each PhysioNet.org dataset and 95.5% F1 scores for the combined PhysioNet dataset.
arXiv Detail & Related papers (2023-06-12T14:53:00Z) - Deep Learning-based Fall Detection Algorithm Using Ensemble Model of
Coarse-fine CNN and GRU Networks [7.624051346741515]
An ensemble model that combines a coarse-fine convolutional neural network and gated recurrent unit is proposed in this study.
The proposed model achieves a recall, precision, and F-score of 92.54%, 96.13%, and 94.26%, respectively.
arXiv Detail & Related papers (2023-04-13T08:30:46Z) - Remote Medication Status Prediction for Individuals with Parkinson's
Disease using Time-series Data from Smartphones [75.23250968928578]
We present a method for predicting the medication status of Parkinson's disease patients using the public mPower dataset.
The proposed method shows promising results in predicting three medication statuses objectively.
arXiv Detail & Related papers (2022-07-26T02:08:08Z) - ACRE: Abstract Causal REasoning Beyond Covariation [90.99059920286484]
We introduce the Abstract Causal REasoning dataset for systematic evaluation of current vision systems in causal induction.
Motivated by the stream of research on causal discovery in Blicket experiments, we query a visual reasoning system with the following four types of questions in either an independent scenario or an interventional scenario.
We notice that pure neural models tend towards an associative strategy under their chance-level performance, whereas neuro-symbolic combinations struggle in backward-blocking reasoning.
arXiv Detail & Related papers (2021-03-26T02:42:38Z) - Handling Non-ignorably Missing Features in Electronic Health Records
Data Using Importance-Weighted Autoencoders [8.518166245293703]
We propose a novel extension of VAEs called Importance-Weighted Autoencoders (IWAEs) to flexibly handle Missing Not At Random patterns in the Physionet data.
Our proposed method models the missingness mechanism using an embedded neural network, eliminating the need to specify the exact form of the missingness mechanism a priori.
arXiv Detail & Related papers (2021-01-18T22:53:29Z) - Predicting Parkinson's Disease with Multimodal Irregularly Collected
Longitudinal Smartphone Data [75.23250968928578]
Parkinsons Disease is a neurological disorder and prevalent in elderly people.
Traditional ways to diagnose the disease rely on in-person subjective clinical evaluations on the quality of a set of activity tests.
We propose a novel time-series based approach to predicting Parkinson's Disease with raw activity test data collected by smartphones in the wild.
arXiv Detail & Related papers (2020-09-25T01:50:15Z) - Deep Recurrent Model for Individualized Prediction of Alzheimer's
Disease Progression [4.034948808542701]
Alzheimer's disease (AD) is one of the major causes of dementia and is characterized by slow progression over several years.
We propose a novel computational framework that can predict the phenotypic measurements of MRI biomarkers and trajectories of clinical status.
arXiv Detail & Related papers (2020-05-06T08:08:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.