Accurate Human Body Reconstruction for Volumetric Video
- URL: http://arxiv.org/abs/2202.13118v1
- Date: Sat, 26 Feb 2022 11:37:08 GMT
- Title: Accurate Human Body Reconstruction for Volumetric Video
- Authors: Decai Chen, Markus Worchel, Ingo Feldmann, Oliver Schreer, Peter
Eisert
- Abstract summary: We introduce and optimize deep learning-based multi-view stereo networks for depth map estimation in the context of professional volumetric video reconstruction.
We show that our method can generate high levels of geometric detail for reconstructed human bodies.
- Score: 0.9134661726886928
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: In this work, we enhance a professional end-to-end volumetric video
production pipeline to achieve high-fidelity human body reconstruction using
only passive cameras. While current volumetric video approaches estimate depth
maps using traditional stereo matching techniques, we introduce and optimize
deep learning-based multi-view stereo networks for depth map estimation in the
context of professional volumetric video reconstruction. Furthermore, we
propose a novel depth map post-processing approach including filtering and
fusion, by taking into account photometric confidence, cross-view geometric
consistency, foreground masks as well as camera viewing frustums. We show that
our method can generate high levels of geometric detail for reconstructed human
bodies.
Related papers
- Refinement of Monocular Depth Maps via Multi-View Differentiable Rendering [4.717325308876748]
We present a novel approach to generate view consistent and detailed depth maps from a number of posed images.
We leverage advances in monocular depth estimation, which generate topologically complete, but metrically inaccurate depth maps.
Our method is able to generate dense, detailed, high-quality depth maps, also in challenging indoor scenarios, and outperforms state-of-the-art depth reconstruction approaches.
arXiv Detail & Related papers (2024-10-04T18:50:28Z) - NoPose-NeuS: Jointly Optimizing Camera Poses with Neural Implicit
Surfaces for Multi-view Reconstruction [0.0]
NoPose-NeuS is a neural implicit surface reconstruction method that extends NeuS to jointly optimize camera poses with the geometry and color networks.
We show that the proposed method can estimate relatively accurate camera poses, while maintaining a high surface reconstruction quality with 0.89 mean Chamfer distance.
arXiv Detail & Related papers (2023-12-23T12:18:22Z) - TMO: Textured Mesh Acquisition of Objects with a Mobile Device by using
Differentiable Rendering [54.35405028643051]
We present a new pipeline for acquiring a textured mesh in the wild with a single smartphone.
Our method first introduces an RGBD-aided structure from motion, which can yield filtered depth maps.
We adopt the neural implicit surface reconstruction method, which allows for high-quality mesh.
arXiv Detail & Related papers (2023-03-27T10:07:52Z) - Multi-Camera Collaborative Depth Prediction via Consistent Structure
Estimation [75.99435808648784]
We propose a novel multi-camera collaborative depth prediction method.
It does not require large overlapping areas while maintaining structure consistency between cameras.
Experimental results on DDAD and NuScenes datasets demonstrate the superior performance of our method.
arXiv Detail & Related papers (2022-10-05T03:44:34Z) - Robust Consistent Video Depth Estimation [65.53308117778361]
We present an algorithm for estimating consistent dense depth maps and camera poses from a monocular video.
Our algorithm combines two complementary techniques: (1) flexible deformation-splines for low-frequency large-scale alignment and (2) geometry-aware depth filtering for high-frequency alignment of fine depth details.
In contrast to prior approaches, our method does not require camera poses as input and achieves robust reconstruction for challenging hand-held cell phone captures containing a significant amount of noise, shake, motion blur, and rolling shutter deformations.
arXiv Detail & Related papers (2020-12-10T18:59:48Z) - Consistent Video Depth Estimation [57.712779457632024]
We present an algorithm for reconstructing dense, geometrically consistent depth for all pixels in a monocular video.
We leverage a conventional structure-from-motion reconstruction to establish geometric constraints on pixels in the video.
Our algorithm is able to handle challenging hand-held captured input videos with a moderate degree of dynamic motion.
arXiv Detail & Related papers (2020-04-30T17:59:26Z) - Deep 3D Capture: Geometry and Reflectance from Sparse Multi-View Images [59.906948203578544]
We introduce a novel learning-based method to reconstruct the high-quality geometry and complex, spatially-varying BRDF of an arbitrary object.
We first estimate per-view depth maps using a deep multi-view stereo network.
These depth maps are used to coarsely align the different views.
We propose a novel multi-view reflectance estimation network architecture.
arXiv Detail & Related papers (2020-03-27T21:28:54Z) - Video Depth Estimation by Fusing Flow-to-Depth Proposals [65.24533384679657]
We present an approach with a differentiable flow-to-depth layer for video depth estimation.
The model consists of a flow-to-depth layer, a camera pose refinement module, and a depth fusion network.
Our approach outperforms state-of-the-art depth estimation methods, and has reasonable cross dataset generalization capability.
arXiv Detail & Related papers (2019-12-30T10:45:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.