RL-PGO: Reinforcement Learning-based Planar Pose-Graph Optimization
- URL: http://arxiv.org/abs/2202.13221v1
- Date: Sat, 26 Feb 2022 20:10:14 GMT
- Title: RL-PGO: Reinforcement Learning-based Planar Pose-Graph Optimization
- Authors: Nikolaos Kourtzanidis, Sajad Saeedi
- Abstract summary: This paper presents a state-of-the-art Deep Reinforcement Learning (DRL) based environment and proposed agent for 2D pose-graph optimization.
We demonstrate that the pose-graph optimization problem can be modeled as a partially observable Decision Process and evaluate performance on real-world and synthetic datasets.
- Score: 1.4884785898657995
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The objective of pose SLAM or pose-graph optimization (PGO) is to estimate
the trajectory of a robot given odometric and loop closing constraints.
State-of-the-art iterative approaches typically involve the linearization of a
non-convex objective function and then repeatedly solve a set of normal
equations. Furthermore, these methods may converge to a local minima yielding
sub-optimal results. In this work, we present to the best of our knowledge the
first Deep Reinforcement Learning (DRL) based environment and proposed agent
for 2D pose-graph optimization. We demonstrate that the pose-graph optimization
problem can be modeled as a partially observable Markov Decision Process and
evaluate performance on real-world and synthetic datasets. The proposed agent
outperforms state-of-the-art solver g2o on challenging instances where
traditional nonlinear least-squares techniques may fail or converge to
unsatisfactory solutions. Experimental results indicate that iterative-based
solvers bootstrapped with the proposed approach allow for significantly higher
quality estimations. We believe that reinforcement learning-based PGO is a
promising avenue to further accelerate research towards globally optimal
algorithms. Thus, our work paves the way to new optimization strategies in the
2D pose SLAM domain.
Related papers
- Fast Two-Time-Scale Stochastic Gradient Method with Applications in Reinforcement Learning [5.325297567945828]
We propose a new method for two-time-scale optimization that achieves significantly faster convergence than the prior arts.
We characterize the proposed algorithm under various conditions and show how it specializes on online sample-based methods.
arXiv Detail & Related papers (2024-05-15T19:03:08Z) - Model Uncertainty in Evolutionary Optimization and Bayesian Optimization: A Comparative Analysis [5.6787965501364335]
Black-box optimization problems are common in many real-world applications.
These problems require optimization through input-output interactions without access to internal workings.
Two widely used gradient-free optimization techniques are employed to address such challenges.
This paper aims to elucidate the similarities and differences in the utilization of model uncertainty between these two methods.
arXiv Detail & Related papers (2024-03-21T13:59:19Z) - Learning Constrained Optimization with Deep Augmented Lagrangian Methods [54.22290715244502]
A machine learning (ML) model is trained to emulate a constrained optimization solver.
This paper proposes an alternative approach, in which the ML model is trained to predict dual solution estimates directly.
It enables an end-to-end training scheme is which the dual objective is as a loss function, and solution estimates toward primal feasibility, emulating a Dual Ascent method.
arXiv Detail & Related papers (2024-03-06T04:43:22Z) - Reducing the Need for Backpropagation and Discovering Better Optima With
Explicit Optimizations of Neural Networks [4.807347156077897]
We propose a computationally efficient alternative for optimizing neural networks.
We derive an explicit solution to a simple feed-forward language model.
We show that explicit solutions perform near-optimality in experiments.
arXiv Detail & Related papers (2023-11-13T17:38:07Z) - Representation Learning with Multi-Step Inverse Kinematics: An Efficient
and Optimal Approach to Rich-Observation RL [106.82295532402335]
Existing reinforcement learning algorithms suffer from computational intractability, strong statistical assumptions, and suboptimal sample complexity.
We provide the first computationally efficient algorithm that attains rate-optimal sample complexity with respect to the desired accuracy level.
Our algorithm, MusIK, combines systematic exploration with representation learning based on multi-step inverse kinematics.
arXiv Detail & Related papers (2023-04-12T14:51:47Z) - Backpropagation of Unrolled Solvers with Folded Optimization [55.04219793298687]
The integration of constrained optimization models as components in deep networks has led to promising advances on many specialized learning tasks.
One typical strategy is algorithm unrolling, which relies on automatic differentiation through the operations of an iterative solver.
This paper provides theoretical insights into the backward pass of unrolled optimization, leading to a system for generating efficiently solvable analytical models of backpropagation.
arXiv Detail & Related papers (2023-01-28T01:50:42Z) - An Online Prediction Approach Based on Incremental Support Vector
Machine for Dynamic Multiobjective Optimization [19.336520152294213]
We propose a novel prediction algorithm based on incremental support vector machine (ISVM)
We treat the solving of dynamic multiobjective optimization problems (DMOPs) as an online learning process.
The proposed algorithm can effectively tackle dynamic multiobjective optimization problems.
arXiv Detail & Related papers (2021-02-24T08:51:23Z) - Zeroth-Order Hybrid Gradient Descent: Towards A Principled Black-Box
Optimization Framework [100.36569795440889]
This work is on the iteration of zero-th-order (ZO) optimization which does not require first-order information.
We show that with a graceful design in coordinate importance sampling, the proposed ZO optimization method is efficient both in terms of complexity as well as as function query cost.
arXiv Detail & Related papers (2020-12-21T17:29:58Z) - An AI-Assisted Design Method for Topology Optimization Without
Pre-Optimized Training Data [68.8204255655161]
An AI-assisted design method based on topology optimization is presented, which is able to obtain optimized designs in a direct way.
Designs are provided by an artificial neural network, the predictor, on the basis of boundary conditions and degree of filling as input data.
arXiv Detail & Related papers (2020-12-11T14:33:27Z) - A Primer on Zeroth-Order Optimization in Signal Processing and Machine
Learning [95.85269649177336]
ZO optimization iteratively performs three major steps: gradient estimation, descent direction, and solution update.
We demonstrate promising applications of ZO optimization, such as evaluating and generating explanations from black-box deep learning models, and efficient online sensor management.
arXiv Detail & Related papers (2020-06-11T06:50:35Z) - Objective-Sensitive Principal Component Analysis for High-Dimensional
Inverse Problems [0.0]
We present a novel approach for adaptive, differentiable parameterization of large-scale random fields.
The developed technique is based on principal component analysis (PCA) but modifies a purely data-driven basis of principal components considering objective function behavior.
Three algorithms for optimal parameter decomposition are presented and applied to an objective of 2D synthetic history matching.
arXiv Detail & Related papers (2020-06-02T18:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.