STEADY: Simultaneous State Estimation and Dynamics Learning from
Indirect Observations
- URL: http://arxiv.org/abs/2203.01299v1
- Date: Wed, 2 Mar 2022 18:25:56 GMT
- Title: STEADY: Simultaneous State Estimation and Dynamics Learning from
Indirect Observations
- Authors: Jiayi Wei, Jarrett Holtz, Isil Dillig, Joydeep Biswas
- Abstract summary: Many state-of-the-art approaches in learning kinodynamic models require precise measurements of robot states as labeled input/output examples.
We propose a new technique for learning neural kinodynamic models by performing simultaneous state estimation and dynamics learning.
Our approach achieves significantly higher accuracy but is also more robust to observation noise, thereby showing promise for boosting the performance of many other robotics applications.
- Score: 17.86873192361793
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate kinodynamic models play a crucial role in many robotics applications
such as off-road navigation and high-speed driving. Many state-of-the-art
approaches in learning stochastic kinodynamic models, however, require precise
measurements of robot states as labeled input/output examples, which can be
hard to obtain in outdoor settings due to limited sensor capabilities and the
absence of ground truth. In this work, we propose a new technique for learning
neural stochastic kinodynamic models from noisy and indirect observations by
performing simultaneous state estimation and dynamics learning. The proposed
technique iteratively improves the kinodynamic model in an
expectation-maximization loop, where the E Step samples posterior state
trajectories using particle filtering, and the M Step updates the dynamics to
be more consistent with the sampled trajectories via stochastic gradient
ascent. We evaluate our approach on both simulation and real-world benchmarks
and compare it with several baseline techniques. Our approach not only achieves
significantly higher accuracy but is also more robust to observation noise,
thereby showing promise for boosting the performance of many other robotics
applications.
Related papers
- KFD-NeRF: Rethinking Dynamic NeRF with Kalman Filter [49.85369344101118]
We introduce KFD-NeRF, a novel dynamic neural radiance field integrated with an efficient and high-quality motion reconstruction framework based on Kalman filtering.
Our key idea is to model the dynamic radiance field as a dynamic system whose temporally varying states are estimated based on two sources of knowledge: observations and predictions.
Our KFD-NeRF demonstrates similar or even superior performance within comparable computational time and state-of-the-art view synthesis performance with thorough training.
arXiv Detail & Related papers (2024-07-18T05:48:24Z) - Learning minimal representations of stochastic processes with
variational autoencoders [52.99137594502433]
We introduce an unsupervised machine learning approach to determine the minimal set of parameters required to describe a process.
Our approach enables for the autonomous discovery of unknown parameters describing processes.
arXiv Detail & Related papers (2023-07-21T14:25:06Z) - LEARNEST: LEARNing Enhanced Model-based State ESTimation for Robots
using Knowledge-based Neural Ordinary Differential Equations [4.3403382998035624]
In this work, we consider the task of obtaining accurate state estimates for robotic systems by enhancing the dynamics model used in state estimation algorithms.
To enhance the dynamics models and improve the estimation accuracy, we utilize a deep learning framework known as knowledge-based neural ordinary differential equations (KNODEs)
In our proposed LEARNEST framework, we integrate the data-driven model into two novel model-based state estimation algorithms, which are denoted as KNODE-MHE and KNODE-UKF.
arXiv Detail & Related papers (2022-09-16T22:16:40Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Gradient-Based Trajectory Optimization With Learned Dynamics [80.41791191022139]
We use machine learning techniques to learn a differentiable dynamics model of the system from data.
We show that a neural network can model highly nonlinear behaviors accurately for large time horizons.
In our hardware experiments, we demonstrate that our learned model can represent complex dynamics for both the Spot and Radio-controlled (RC) car.
arXiv Detail & Related papers (2022-04-09T22:07:34Z) - Learning continuous models for continuous physics [94.42705784823997]
We develop a test based on numerical analysis theory to validate machine learning models for science and engineering applications.
Our results illustrate how principled numerical analysis methods can be coupled with existing ML training/testing methodologies to validate models for science and engineering applications.
arXiv Detail & Related papers (2022-02-17T07:56:46Z) - Likelihood-Free Inference in State-Space Models with Unknown Dynamics [71.94716503075645]
We introduce a method for inferring and predicting latent states in state-space models where observations can only be simulated, and transition dynamics are unknown.
We propose a way of doing likelihood-free inference (LFI) of states and state prediction with a limited number of simulations.
arXiv Detail & Related papers (2021-11-02T12:33:42Z) - Learning Unstable Dynamics with One Minute of Data: A
Differentiation-based Gaussian Process Approach [47.045588297201434]
We show how to exploit the differentiability of Gaussian processes to create a state-dependent linearized approximation of the true continuous dynamics.
We validate our approach by iteratively learning the system dynamics of an unstable system such as a 9-D segway.
arXiv Detail & Related papers (2021-03-08T05:08:47Z) - Robots State Estimation and Observability Analysis Based on Statistical
Motion Models [10.941793802354953]
This paper presents a generic motion model to capture mobile robots' dynamic behaviors (translation and rotation)
The model is based on statistical models driven by white random processes and is formulated into a full state estimation algorithm based on the error-state extended Kalman filtering framework (ESEKF)
A novel texttextbfitthin set concept is introduced to characterize the unobservable subset of the system states.
arXiv Detail & Related papers (2020-10-12T18:35:33Z) - Automatic Differentiation and Continuous Sensitivity Analysis of Rigid
Body Dynamics [15.565726546970678]
We introduce a differentiable physics simulator for rigid body dynamics.
In the context of trajectory optimization, we introduce a closed-loop model-predictive control algorithm.
arXiv Detail & Related papers (2020-01-22T03:54:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.