Multi-Tailed Vision Transformer for Efficient Inference
- URL: http://arxiv.org/abs/2203.01587v3
- Date: Mon, 18 Mar 2024 14:32:54 GMT
- Title: Multi-Tailed Vision Transformer for Efficient Inference
- Authors: Yunke Wang, Bo Du, Wenyuan Wang, Chang Xu,
- Abstract summary: Vision Transformer (ViT) has achieved promising performance in image recognition.
We propose a Multi-Tailed Vision Transformer (MT-ViT) in the paper.
MT-ViT adopts multiple tails to produce visual sequences of different lengths for the following Transformer encoder.
- Score: 44.43126137573205
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recently, Vision Transformer (ViT) has achieved promising performance in image recognition and gradually serves as a powerful backbone in various vision tasks. To satisfy the sequential input of Transformer, the tail of ViT first splits each image into a sequence of visual tokens with a fixed length. Then the following self-attention layers constructs the global relationship between tokens to produce useful representation for the downstream tasks. Empirically, representing the image with more tokens leads to better performance, yet the quadratic computational complexity of self-attention layer to the number of tokens could seriously influence the efficiency of ViT's inference. For computational reduction, a few pruning methods progressively prune uninformative tokens in the Transformer encoder, while leaving the number of tokens before the Transformer untouched. In fact, fewer tokens as the input for the Transformer encoder can directly reduce the following computational cost. In this spirit, we propose a Multi-Tailed Vision Transformer (MT-ViT) in the paper. MT-ViT adopts multiple tails to produce visual sequences of different lengths for the following Transformer encoder. A tail predictor is introduced to decide which tail is the most efficient for the image to produce accurate prediction. Both modules are optimized in an end-to-end fashion, with the Gumbel-Softmax trick. Experiments on ImageNet-1K demonstrate that MT-ViT can achieve a significant reduction on FLOPs with no degradation of the accuracy and outperform other compared methods in both accuracy and FLOPs.
Related papers
- CageViT: Convolutional Activation Guided Efficient Vision Transformer [90.69578999760206]
This paper presents an efficient vision Transformer, called CageViT, that is guided by convolutional activation to reduce computation.
Our CageViT, unlike current Transformers, utilizes a new encoder to handle the rearranged tokens.
Experimental results demonstrate that the proposed CageViT outperforms the most recent state-of-the-art backbones by a large margin in terms of efficiency.
arXiv Detail & Related papers (2023-05-17T03:19:18Z) - Pix4Point: Image Pretrained Standard Transformers for 3D Point Cloud
Understanding [62.502694656615496]
We present Progressive Point Patch Embedding and present a new point cloud Transformer model namely PViT.
PViT shares the same backbone as Transformer but is shown to be less hungry for data, enabling Transformer to achieve performance comparable to the state-of-the-art.
We formulate a simple yet effective pipeline dubbed "Pix4Point" that allows harnessing Transformers pretrained in the image domain to enhance downstream point cloud understanding.
arXiv Detail & Related papers (2022-08-25T17:59:29Z) - HiViT: Hierarchical Vision Transformer Meets Masked Image Modeling [126.89573619301953]
We propose a new design of hierarchical vision transformers named HiViT (short for Hierarchical ViT)
HiViT enjoys both high efficiency and good performance in MIM.
In running MAE on ImageNet-1K, HiViT-B reports a +0.6% accuracy gain over ViT-B and a 1.9$times$ speed-up over Swin-B.
arXiv Detail & Related papers (2022-05-30T09:34:44Z) - Vision Transformer with Progressive Sampling [73.60630716500154]
We propose an iterative and progressive sampling strategy to locate discriminative regions.
When trained from scratch on ImageNet, PS-ViT performs 3.8% higher than the vanilla ViT in terms of top-1 accuracy.
arXiv Detail & Related papers (2021-08-03T18:04:31Z) - Transformer-Based Deep Image Matching for Generalizable Person
Re-identification [114.56752624945142]
We investigate the possibility of applying Transformers for image matching and metric learning given pairs of images.
We find that the Vision Transformer (ViT) and the vanilla Transformer with decoders are not adequate for image matching due to their lack of image-to-image attention.
We propose a new simplified decoder, which drops the full attention implementation with the softmax weighting, keeping only the query-key similarity.
arXiv Detail & Related papers (2021-05-30T05:38:33Z) - CvT: Introducing Convolutions to Vision Transformers [44.74550305869089]
Convolutional vision Transformer (CvT) improves Vision Transformer (ViT) in performance and efficiency.
New architecture introduces convolutions into ViT to yield the best of both designs.
arXiv Detail & Related papers (2021-03-29T17:58:22Z) - CrossViT: Cross-Attention Multi-Scale Vision Transformer for Image
Classification [17.709880544501758]
We propose a dual-branch transformer to combine image patches of different sizes to produce stronger image features.
Our approach processes small-patch and large-patch tokens with two separate branches of different computational complexity.
Our proposed cross-attention only requires linear time for both computational and memory complexity instead of quadratic time otherwise.
arXiv Detail & Related papers (2021-03-27T13:03:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.